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Abstract

A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-
dimensional gas chromatography–time-of-flight mass spectrometry (GC6GC–ToFMS) was developed for the simultaneous
screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a
powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria
and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial
design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types
of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological
analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A
set of 54 volatile markers was selected among all the compounds detected by GC6GC–ToFMS. Principal Component
Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial
contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were
associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high
GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other
matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of
the pheromone. The HS-SPME/GC6GC–ToFMS methodology can be regarded as the basis for the development of a rapid
and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological
contamination and for detection of mites in cereals grains and coffee beans.
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Introduction

The food industry suffers enormous financial losses due to

complains arising out of off-flavours, which also leads to the loss of

consumers and suppliers confidence [1]. Furthermore, the

globalization of the markets implies deep management and control

of the process as many kinds of foods are processed and consumed

far away from the site where they are cultivated. Apart from off-

flavours, serious health problems can arise, due to the biological

deterioration as a possible consequence of storage of those grains.

While in storage, this biological deterioration can result of several

pests such as insects, rodents, mites and microorganisms (especially

fungi).

Microbial volatile metabolites produced during storage and/or

processing of cereals or coffee have been used as markers of

microbial contamination [2–4]. The metabolite volatile profile

seems to be closely related to the product safety and quality. For

example, the fungal metabolites can be related with the fungal

specie and the type of food matrix contaminated [5]. An extensive

range of common volatiles linked to microbial spoilage was

reported, comprising a large diversity of alcohols, ketones,

aldehydes, esters, carboxylics acids, lactones, terpenes, sulphur

and nitrogen compounds [6]. The most common volatiles

associated to microbial contamination in cereals and other types

of foods are 2-methyl-1-propanol, 3-methyl-1-butanol, 1-octanol,

1-octen-3-ol, 2-butanone, 3-octanone, 2-hexanone, 2-heptanone,

2-methylisoborneol, geosmin, limonene, dimethyl disulfide and 3-

methylfuran [2,6–12]. The information on the volatile profiles of

other organism associated to food spoilage such as microscopic

invertebrates is extremely scarce, although mites are known to

produce volatile compounds associated to specific ‘‘minty’’ odours

in contaminated foods [13].

Rapid and reproducible approaches for screening the volatile

biological metabolites in foods are an emerging concern, since the

conventional microscope observations and culture-based methods,

both used to detect microorganisms and the first to detect mites,

are time consuming, and laborious [14]. A wide range of methods

have been used to extract volatile and semi-volatile compounds,
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some of them based on solvent extraction, but since the 1990’s,

solid phase microextraction (SPME) has been extensively used.

SPME is a rapid, easy, solvent-free and sensitive extraction/

concentration technique [15]. For the analysis, one-dimensional

gas chromatographic (1D–GC) processes are widely applied in

food products, although long GC runs are needed to achieve high

separation power and this technique typically shows peaks that are

the result of two or more co-eluted compounds. Considerable

research has been dedicated to improve the resolving power of a

GC system, where one possibility is to couple, through an interface

(modulator), two independent columns, i.e., with different station-

ary phases, named as comprehensive two-dimensional gas

chromatography (GC6GC) [16,17]. The separation in first

dimension (1D) is usually driven by the boiling point properties

and polarity in the second one (2D). This technique shows a great

potential, as it grants high degree of separation, becoming a

suitable solution for the analysis of target compounds in complex

matrices. GC6GC–ToFMS has been successfully used in several

fields of analysis, including food matrix [18–20]. Moreover, the

use of SPME combined with GC6GC–ToFMS for the screening

of food microbial contaminants was already been used, as in

moisture damage in cacao beans and for the evaluation of

cucumber spoilage, revealing a higher sensitivity [21,22].

This work reports the development of an approach based on

headspace (HS)-SPME combined with GC6GC–ToFMS for the

screening of biological (microbial and mites) contamination level

in solid foods. A full-factorial design for the optimization of

SPME experimental parameters was developed using five

standards reported as microbial growth markers [8]. The

developed methodology was then applied to real matrices:

grains of three types of rice (rough, brown, and white rice), oat

and wheat and also to green and roasted coffee beans.

Simultaneously, the evaluation of microbial and mites contam-

ination was performed by quantification of colonies (total

aerobic microorganisms, yeasts and moulds) and by optical

microscopy counts, respectively.

Materials and Methods

Samples
Seven types of samples were analysed: green and roasted coffee

beans (Coffea arabica), rough rice (unprocessed raw rice), brown rice

(unpolished rice), and white rice (Oryza sativa L.), unprocessed raw

oat (Avena sativa) and unprocessed raw wheat (Triticum aestivum). The

samples were supplied from local warehouses who have kept them

in silos until the commercialization and/or transformation. After

sampling they were stored in the dark, under cool and dry

conditions, until analysis.

Reagents and Standards
For the experiments hereby reported, five chemical standards

were used: 3-octanone (99%; Aldrich-Chemie; Steinheim, Ger-

many), 1-octanol (96%; Merck-Schuchardt; Darmstadt, Ger-

many), 1-octen-3-ol (98%; Aldrich Chemical; Milwaukee,

U.S.A), 3-methyl-1-butanol ($99%; Aldrich-Chemie; Steinheim,

Germany), geosmin (98%; Wako; Neuss, Germany). A stock

solution was prepared with 3-octanone (120 mg L21), 1-octanol

(59 mg L21), 1-octen-3-ol (93 mg L21), 3-methyl-1-butanol

(180 mg L21), and geosmin (1.8 mg L21) in absolute ethanol,

and stored in a glass flask at 4uC.

Full-factorial Design for Optimization of SPME Parameters
Three SPME experimental parameters were tested: tempera-

ture and time of extraction and SPME coating fibre. The SPME

holder for manual sampling and fibres were purchased from

Supelco (Aldrich, Bellefonte, PA, USA). Four coating fibres were

used: 85 mm polyacrylate coating (PA), 100 mm polydimethylsilox-

ane coating (PDMS), 65 mm polydimethylsiloxane/divinylbenzene

coating (PDMS/DVB) and 50/30 mm divinylbenzene/carboxen/

Figure 1. Effect of extraction temperature and time, and SPME coating fibre on the extraction efficiency. Extraction efficiency evaluated
on five standards: 3-methyl-1-butanol, 3-octanone, 1-octanol, geosmin, and 1-octen-3-ol. Each bubble represents total GC peak area of the five
standards.
doi:10.1371/journal.pone.0059338.g001
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polydimethylsiloxane coating (DVB/CAR/PDMS). SPME fibres

were preconditioned in the GC injector, according to the

recommendation of the manufacturer and daily conditioned for

10 min at 250uC.

An aliquot of 100 mL of the stock solution containing the five

chemical standards was placed in a 120 mL glass vial, and the vial

was capped with a PTFE septum and an aluminium cap

(Chromacol Ltd., Herts, UK). After the closure of the sample

vials, the SPME fibre was manually inserted into the sample vial

headspace for 10 and 30 min at 30.0, 40.0 and 50.0uC (60.1uC) in

a water bath. This procedure was repeated in triplicate for each

condition tested. All combinations of extraction time and

temperature were tested with the four coating fibres. The analyses

were carried out by gas chromatography–quadrupole mass

spectrometry (GC–qMS). Blanks, corresponding to the analysis

of the coating fibre not submitted to any extraction procedure,

were run between sets of three analyses.

Analysis of Rice, Wheat and Oat Grains and Coffee Beans
For HS-SPME assay, aliquots of 6.5–16 g of each sample,

corresponding to a volume ca. 20 mL (1/b ratio of 0.5) were

placed into a 60 mL glass vial, and the vial was capped with a

PTFE septum and an aluminium cap. The vial was placed in a

thermostated water bath at 50.0uC, and then the DVB/CAR/

Figure 2. Heatmap from five cereals grains, and green and roasted coffee of 54 potential microbial markers. Different intensities
correspond to the normalized GC peak areas of each compound.
doi:10.1371/journal.pone.0059338.g002

Table 1. Total aerobic microorganisms, yeasts and moulds in three types of rice, unprocessed oat, unprocessed wheat and green
and roasted coffee.

White
rice

RSD
(%)

Brown
rice

RSD
(%)

Rough
rice

RSD
(%) Wheat

RSD
(%) Oat

RSD
(%)

Green
coffee

RSD
(%)

Roasted
coffee

RSD
(%)

Total aerobic
microorganisms

1.0 0.0 383.3 5.3 1780.0 4.8 448.3 0.7 50.0 0.0 158.3 4.8 0.0 –

Moulds 11.7 4.9 1036.7 21.3 1246.7 4.9 85.0 8.4 20.0 0.0 50.0 20.0 0.0 –

Yeasts 0.0 – 0.0 – 335.7 10.0 0.0 – 1.7 15.0 0.0 – 0.0 –

Results expressed in CFU g21, Mean of three independent assays, each one with three replicates (n = 9).
doi:10.1371/journal.pone.0059338.t001
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PDMS fibre was inserted in the headspace during the 30 min of

extraction. Three independent assays were conducted for each

type of grain. The analyses were carried out by GC6GC–ToFMS.

Blanks, corresponding to the analysis of the coating fibre not

submitted to any extraction procedure, were run between the sets

of three analyses.

GC-qMS Analysis
After the extraction/concentration step of the five standards

under study from the stock solution, the SPME coating fibre was

manually introduced into the GC injection port at 250uC where it

was maintained for 3 min for desorption. The injection port was

lined with a 0.75 mm I.D. splitless glass liner. The analysis of

volatiles extracted by HS-SPME was carried in an Agilent

Technologies 6890 N Network gas chromatograph, equipped

with a 60 m60.25 mm I.D., 0.25 mm film thickness DB-FFAP

fused silica capillary column (J&W Scientific, Folsom, CA, USA),

connected to an Agilent 5973 quadrupole mass selective detector.

Splitless injections were used (3 min). Helium carrier gas had a

flow rate of 1.7 mL min21 and the column head pressure was

12 psi. The oven was programmed to start at 50uC (1 min) and

raised until 220uC (1 min) at 5uC min21. The mass spectrometer

was operated in the electron impact mode (EI) at 70 eV scanning

the range 33–300 m/z at 3 scans s21, in a full scan acquisition

mode. The GC-qMS analysis was only applied to the five chemical

standards, and their identification in all assays were confirmed by

their retention times and mass spectra, which were also compared

with the library data system of the GC–qMS equipment (Wiley

275).

GC6GC–ToFMS Analysis
The SPME coating fibre containing the headspace volatile

compounds of the cereals and coffee samples was manually

introduced into the GC6GC–ToFMS injection port and main-

tained at 250uC for desorption. The injection port was lined with a

0.75 mm I.D. splitless glass liner. Splitless injections were used

(30 s). LECO Pegasus 4D (LECO, St. Joseph, MI, USA)

GC6GC–ToFMS system consisted of an Agilent GC 7890A gas

chromatograph, with a dual stage jet cryogenic modulator

(licensed from Zoex) and a secondary oven. The detector was a

high-speed ToF mass spectrometer. An HP-5 30 m60.32 mm

I.D., 0.25 mm film thickness (J&W Scientific Inc., Folsom, CA,

USA) was used as 1D column and a DB-FFAP 0.79 m x 0.25 mm

I.D., 0.25 mm film thickness (J&W Scientific Inc., Folsom, CA,

USA) was used as the 2D column. The carrier gas was helium at a

constant flow rate of 2.50 mL min21. The primary oven

temperature was programmed from 40uC (1 min) to 140uC at

10uC min21, then, from 140uC to 200uC (1 min) at 7uC min21.

The secondary oven temperature program was 15uC offset above

the primary oven. The MS transfer line temperature was 250uC
and the MS source temperature was 250uC. The modulation time

was 5 s; the modulator temperature was kept at 20uC offset (above

primary oven). Also, the hot and cold pulse duration time was 0.80

and 1.70 s, respectively. The ToFMS was operated at a spectrum

storage rate of 100 spectra s21. The mass spectrometer was

operated in the EI mode at 70 eV using a range of m/z 33–350

and the detector voltage was 21695 V. Total ion chromatograms

(TIC) were processed using the automated data processing

software ChromaTOF (LECO) at S/N threshold 6. Contour plots

were used to evaluate the general separation quality and for

manual peak identification. A signal-to-noise threshold of 100 was

used. In order to tentatively identify the different compounds, the

mass spectrum of each compound detected was compared to those

in mass spectral libraries which included an in-house library of

standards, and two commercial databases (Wiley 275 and US

National Institute of Science and Technology (NIST) V. 2.0 -

Mainlib and Replib). Furthermore, a manual inspection of the

mass spectra was done, combined with the use of additional data,

such as the retention index (RI) value, which was determined

according to the Van den Dool and Kratz RI equation [23]. For

the determination of the RI, a C6– C20 n-alkanes series was used,

and these values were compared with values reported in the

literature for chromatographic columns similar to that used as the
1D column in the present work [24–40]. A mass spectral match

factor, the tentatively identified compounds showed similarity

matches .900, was set to decide whether a peak was correctly

identified or not. The DTIC (Deconvoluted Total Ion Current)

GC6GC area data were used as an approach to estimate the

relative content of each volatile component. Reproducibility was

expressed as relative standard deviation (RSD).

Enumeration of Total Aerobic Microorganisms, Yeasts
and Moulds

For each sample, three independent assays were performed,

each one with three replicates. In each independent assay, three

10 g sub-samples of grain were suspended in 90 mL of Peptone

Water (Merck, Darmstad, Germany). The enumeration of total

aerobic microorganisms was based in the ISO standard 4833:2003

[41]. After the preparation of the initial suspension and serial

dilutions, 1 mL of each sample was pour-plated (three replicates)

in Plate Count Agar (Merck4Food, Merck, Darmstad, Germany).

Culture plates were incubated for 7263 hours at 3061 C.

Following incubation, colonies were counted in the most suitable

dilution and the result was calculated from the average colony

counts in the three replicates and expressed as colony forming

units per gram (CFU.g21). The enumeration of yeasts and moulds

was performed according to the Portuguese Standard NP

3277:1987 [42]. Three replicates of each sample were spread-

plated (0.5 and 0.1 mL aliquots) in Rose-Bengal Chloramphenicol

Agar (Merck, Darmstad, Germany). Culture plates were incubated

for 12062 hours at 2561 C. Following incubation, colonies of

yeasts and moulds were counted independently in the most

suitable volume. The results were calculated from the average

colony counts in the three replicates and expressed as colony

forming units per gram (CFU.g21).

Capture and Counting of Mite
Cereals grains and coffee beans were processed separately using

a Berlese funnel for 24 hours in order to isolate mites in 250 mL

erlenmeyers containing a alcoholic solution of 1/1 ethanol/

distillate water (v/v) [43]. For each independent assay three sub-

samples of 20 g each were analysed. The solution was filtered

through polycarbonate membranes 1.2 mm pore size (Millipore,

Bedford, USA) in a vacuum filtration manifold (Millipore,

Bedford, USA). Mite counting was conducted under optical

microscope (Leica DMLS, Leica Microsystems GmbH, Wetzlar,

Germany). During counting, the distinction between adult (male

and female), larval and nymphal stages was based on physiog-

nomic characteristics [44]. Essentially, larva and adult mites were

Figure 3. Typical GC6GC–ToFMS total ion chromatogram contour plots. Rough rice (A), brown rice (B), and white rice (C). Part of the n-
alkanes series (C6–C14) was superimposed on the contour plots. Compounds are numbered according to Table S1.
doi:10.1371/journal.pone.0059338.g003
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identified by the number of legs, where the former is six-legged

and the latter is eight-legged. Moreover, the gender discrimination

is based on the posterior part, where males have a concave shape,

and females an irregular shape.

Principal Component Analysis
In order to assess a possible relationship between the volatile

metabolites and sample microbial contamination, PCA was

applied to the auto-scaled areas of the 54 volatiles identified by

HS-SPME/GC6GC–ToFMS presented in the 7 types of matrices

under study (grains of rough, brown and white rice, oat, wheat,

and green and roasted coffee beans), each one corresponding to

three independent assays, and also to the values of microbial

contamination (colonies of total aerobic microorganisms - TAM,

yeasts, and moulds) [45]. The goal of this approach was to extract

the main sources of variability and hence to help on the

characterisation of the dataset.

Results and Discussion

Full-factorial Design for Optimization of SPME
Experimental Parameters

In order to optimize the SPME procedure, a full-factorial design

was implemented, which comprised the evaluation of three

extraction temperatures (30.0, 40.0 and 50.0 C), two extraction

times (10 and 30 min) and four coating SPME fibres (PA, PDMS,

PDMS/DVB, and DVB/CAR/PDMS). The results of these

analyses are represented in Fig. 1, where each bubble corresponds

to the total chromatographic area of the five standards under study

inherent to three different variables (extraction temperature,

extraction time and the SPME fibre type). The bubble plot

showed in Fig. 1 allows a straightforward comparison of the overall

extraction efficiency, as a larger bubble represents a higher total

chromatographic area. Independently of the used fibre, under the

ranges of time and temperature studied, the higher extraction

temperature and time led to higher chromatographic area, i.e.

higher extraction efficiency. However, for the conditions tested,

the higher extraction temperatures promoted higher GC peak

areas than the higher extraction times, which suggest that the

effect of the extraction temperature was more important, on the

extraction efficiency, than extraction time (Fig. 1).

With the exception observed at 50.0 C, for 30 min, where PA

and DVB/CAR/PDMS fibres exhibited similar chromatographic

areas (Fig. 1), PA fibre generally presented the higher extraction

efficiency compared to all other fibres under study. The extraction

at 50.0 C, for 30 min with the SPME coating fibre DVB/CAR/

PDMS was selected for further volatile metabolite microbial

extractions. For these conditions, RSD was considered acceptable

(9.5%). DVB/CAR/PDMS fibre was selected instead of PA fibre,

because PA stationary phase retains the volatile compounds

through absorption, while DVB/CAR/PDMS stationary phase

has a synergistic effect between adsorption and absorption. Despite

of the similar results for the two fibres, the mutually synergetic

effect of adsorption and absorption of the stationary phase of the

DVB/CAR/PDMS fibre creates a higher potential of retention

capacity and, consequently, higher sensitivity for complex

matrices, than fibres based on absorption only, namely the PA

fibre. Therefore, according to the manufacturer guidance, this

fibre is only recommended for polar compounds, while DVB/

CAR/PDMS presents a wide range capacity of sorbing com-

pounds with different physicochemical properties within a

molecular weight ranging from 40 to 275.

Approach for Assessment of Microbial Volatile
Metabolites

In order to obtain detailed information about potential

microbial volatiles, different types of cereal grains and coffee

beans were analyzed by GC6GC–ToFMS, after the preliminary

step of optimization of SPME experimental parameters: grains of

rough, brown and, white rice, unprocessed raw oat, unprocessed

raw wheat and green and roasted coffee beans. These products are

not always transported and stored under the most adequate

conditions which may promote the development of microbial

contaminants.

From the several hundred detected compounds, only a set of 54

compounds were tentatively identified in the matrices under study

(available on the supplementary data - Table S1). This set of 54

compounds was selected because 46 of them were previously

reported in the literature as potential markers of microbial

contamination [3,8,9,12,46–51], whereas the other 8 compounds

(peak numbers of Table S1:2, 5, 15, 18, 27, 34, 40, 46) have a

chemical structure that may be related to microbial metabolism.

Thus, the following type of compounds were also considered: i)

short chain (# C10) alcohols, aldehydes and ketones, resultant

from enzymatic breakdown of lipids and subsequent oxidations

[52], ii) 2-enals, linked to food spoilage or degradation [48], and

iii) terpenes, reported as taxonomic fungi markers or indicative of

mycotoxin formation [52,53]. Moreover, a heatmap was per-

formed and illustrated on Fig. 2, for straight trough and rapid

interpretation of the relative abundance of each chemical family

(maximum normalization of the GC peak area) from the different

analyzed samples (with three independent assays). Where for

example, as rough and brown coffee present abundant potential

microbial markers (.0.2 of relative abundance), it should be

expected that these samples will present higher microbial load, as

it can be seen on Table 1 and it will be discussed further.

The most reliable way to confirm the identification of each

compound is based on authentic standard co-injection, which in

several cases is economically prohibitive, and often unachievable

in the time available for analysis, or because standards are not

commercially available. Full data matrix is provided as Supple-

mentary Data (Table S1), which include a list of the 54 selected

metabolites, and the corresponding retention times in both

dimensions, the retention index (RI) obtained through the

modulated chromatogram and the RI reported in the literature

for one dimensional GC with a 5%-Phenyl-methylpolysiloxane

GC column or equivalent and for a comprehensive GC6GC

system with HP-5 for the first dimension. These chromatographic

data is crucial for identification purposes. Furthermore, GC6GC

is an ideal technique for the analysis of complex mixtures where

compounds of similar chemical structure are grouped into distinct

patterns in the 2D chromatographic plane providing useful

information on both their boiling point and polarity (if NP/P set

of columns is used), and relationships of structured retentions have

proved especially useful for compound identification (Fig. 3). This

unique peculiarity of the GC6GC Chromatograms is a powerful

tool in the identification step.

For example, Fig. 3 (A–C) shows the total ion chromatogram

contour plots obtained from rough rice (Fig. 3A), brown rice

(Fig. 3B) and white rice (Fig. 3C). This figure is displayed as an

Figure 4. PC26PC4 scores (A) and loadings (B) scatter plots. Compounds are numbered according to Table S1.
doi:10.1371/journal.pone.0059338.g004
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example of structured 2D contour plots observed as a result of

differences in volatility inherent to the 1D, and the polarity on the
2D. Through Table S1 and Fig. 3, it is possible to identify the

different chemical groups, i.e., aliphatic hydrocarbons have the

lower polarity, therefore have the lower retention time on the 2D

(2tR 0.440–0.450 s), followed by aromatic hydrocarbons (2tR
0.560–0.620 s), and the increasing number of carbons on the

carbon chain increases the 1tR. The differences in polarity are also

observable for aldehyde, ketone and alcohol groups, because they

have higher 2tR (0.530–1.80 s, 0.450–1630 s, and 0.560–3.330 s,

respectively), i.e., higher polarity than hydrocarbons. Within these

chemical families, the aromatic components presented higher 2tR
than the aliphatic ones, which is in accordance with the results

previously reported in literature [20]. Based on the functional

groups of the chemical families under study, the 2tR values

increased in this order, alkyl,aryl,aldehydes < ketones #

alcohols, as it was previously observed [54].

The 54 compounds were tentatively identified by comparison of

their mass spectra to reference database (MS) and chemical

standards, when available, and by comparison of the RIs

calculated (RIcalc) with the values reported in the literature (RIlit)

for 5% phenylpolysilphenylene-siloxane (or equivalent) column

(Table S1). A range between 0 and 26 (|RIcalc-RIlit|) was obtained

for RIcal compared to the RIlit reported in the literature for one

dimensional GC with 5%-phenyl-methylpolysiloxane GC column

or equivalent. This difference in RIs (|RIcalc-RIlit|) is considered

reasonable (,4%) if one takes into account that RIlit values were

determined in a 1D chromatographic separation system, and the

modulation causes some inaccuracy in 1D retention time

(comparison with RIcalc). In addition, comparative literature data

are obtained from a large range of GC stationary phases (several

commercial GC columns are composed of 5% phenyl polysilphe-

nylene-siloxane or equivalent stationary phases) [19], which have a

slight different separation selectivity than DB-FFAP, i.e., the

second column of the GC6GC system.

Aldehydes presented the higher chromatographic areas in white

rice, brown rice and wheat, alcohols prevailed in rough rice and

green coffee, aldehydes/alcohols predominate in oat grains and

alcohols/miscellaneous (namely, butyrolactone) in roasted coffee,

as can easily be seen on Fig. 2, and with more detail on Table S1.

This is in accordance with the literature [12]. The reproducibility,

expressed in RSD, of the different identified volatile compounds

ranged from 0.2% to 55.8%, which is common for natural

products, since they exhibit a great intrinsic variability in

composition, and possibly due to the heterogeneity of the

microbial spoilage, even in the same lot. The highest variability

was usually observed for the trace components.

From the five tested standards (3-octanone, 1-octanol, 1-octen-

3-ol, 3-methyl-1-butanol, and geosmin) only geosmin was not

detected in the cereal grains and coffee beans under study.

Otherwise, the other standards were identified in all food matrices.

Geosmin is produced by soil Actimomycetes [55] and is related to

unpleasant earthy/musty notes in various types of foods [49].

Furthermore, from the most common volatile metabolite micro-

bial potential markers referred in literature (c.f. introduction), 2-

methyl-1-propanol, 3-methyl-1-butanol, 1-octanol, 1-octen-3-ol,

2-butanone, 3-octanone, 2-hexanone, 2-heptanone, limonene,

dimethyl disulfide, 2-methylisoborneol, geosmin, and 3-methyl-

furan, only the last three were not detected in any of the matrices

under study.

Volatile Microbial Metabolites as Potential Markers for
Microbial Contamination

The results of the enumeration of yeasts, moulds and total

aerobic microorganisms presented in Table 1 showed a wide range

of contamination levels in the different food matrices under study.

Rough rice showed the highest degree of contamination, and the

roasted coffee, the lowest one, without any detectable microbial

contaminants. In fact, for the case of coffee beans, the most

commonly reported health problems associated with the intake of

Figure 5. PC16PC2 scores scatter plot (A) and loadings profiles (B) plots of six selected compounds. The selected compounds are
related to the higher contamination levels: methylbenzene, 2-hexanone, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, and 1-octen-3-ol.
doi:10.1371/journal.pone.0059338.g005

Figure 6. Optical micrography of mites (larval and adult stages) found in oat grains.
doi:10.1371/journal.pone.0059338.g006
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roasted coffee products are not directly related to the spoilage

itself, but rather associated to contamination of the raw material,

green coffee beans (according Table 1, green coffee beans

exhibited some degree of microbial contamination), from which

hazardous thermoresistant mycotoxins may result, commonly

ochratoxins, aflatoxins, sterigmatocystin and/or patulin [56,57].

These toxins can remain unaltered or only slightly altered (but sill

with toxic activity) after the thermal treating [58]. These toxins

usually present health concerns, namely potential carcinogenic,

immunosuppressive, teratogenic and mutagenic activities [59]. As

a systematic preventive approach, a rapid screening method for

the evaluation of the contamination level of the green coffee beans

raw material during storage and/or transportation is imperative.

The approach used in the present work was to perform PCA on

the merged data from the potential volatile markers of each matrix

and from microbial contaminants (TAM, yeasts and moulds).

Fig. 4A shows the scores scatter plot of the second (PC2) and the

fourth component (PC4), which contains 33% of the total

variability of the data set. A high variability, which is commonly

found using the first’s principal components, as PC1 versus PC2 or

PC3, was not expected because that type of variability is mainly

driven by the natural volatile profile of the studied samples and not

from the microbial spoilage itself.

The samples are distributed along the PC2 axis, according to

their overall degree of contamination (Table 1 - total aerobic

microorganisms (TAM), moulds and yeasts), from the less

contaminated sample, roasted coffee, corresponding to negative

scores on PC2, to the most contaminated sample, rough rice,

corresponding to positive scores on PC2 positive. Unprocessed oat

grains were an exception. This sample was not located on PC2

accordingly to its microbial contamination level, but rather on the

quadrant corresponding to positive scores for both, PC2 and PC4.

This result was related to the high abundance of 6-methyl-5-

hepten-2-one (peak number 23), 2-methyl-1-propanol (peak

number 31), and especially 2-hydroxy-6-methylbenzaldehyde

(peak number 18) in the oat sample compared to other matrices,

which positioned the unprocessed oat at positive PC2/PC4. From

the three detected compounds in this sample, 2-hydroxy-6-

methylbenzaldehyde is intrinsically linked to mite contamination

(see section below, 2-Hydroxy-6-methylbenzaldehyde for Mite Detection

for further discussion). Fig. 4B presented the results of the

respective PCA loading plots, where the peaks number 3, 21, 24,

26, 34, 38 correspond to methylbenzene, 2-hexanone, 3-octanone,

2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, respectively.

These compounds characterise the samples with highest microbial

contamination level, especially rough rice.

A second PCA was performed only with these six compounds

for the fully distinction between higher and lower contamination

level. Fig. 5A represents the scores scatter plot of the first (PC1)

and the second component (PC2), which contains 90% of the total

variability. PC1 axis seems related to the microbial contamination

level: samples with lower contamination (roasted coffee, white rice,

green coffee, wheat and oat) were located at PC1 negative,

otherwise, samples with higher microbial level (brown and rough

rice) were located at PC1 positive. It was expected a wide range of

contamination levels due to the type of samples under study. For

instance, thermal processed samples as roasted coffee revealed no

contamination level as they suffer rough thermal treatment, while

raw cereals as rough rice presented a higher contamination level.

Moreover, a distinction along PC2 was observed within the

samples with highest contamination levels: brown and rough rice.

This distinction was based on yeasts, moulds and TAM data.

Rough rice, characterized by a high concentration of TAM

(1780.0 CFU g21), moulds (1246.7 CFU g21) and yeasts

(335.7 CFU g21) is positioned in negative PC2, and brown rice,

characterized by a lower level of TAM (383.3 CFU g21) and

moulds (1036.7 CFU g21) and yeasts (undetected), is located at on

the positive side of PC2 (Fig. 5A). Consequently, 3-octanone and

2-methyl-3-pentanol might be associated to TAM and yeasts

contamination by the fact that they had ruled the position of rough

rice in the negative side of PC2 axis. On the other hand, as moulds

contributed positively to PC2, as well as 1-octen-3-ol, 2-nonanone

and 2-hexanone, these compounds may be related to moulds. The

observed distinction, based on the GC peak area of the sub-set of

Figure 7. Adult mite counting per 100 g (AMC.100 g21) and GC peak area of 2-hydroxy-6-methylbenzaldehyde.
doi:10.1371/journal.pone.0059338.g007
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six compounds, allows to infer that the discrimination between

samples was associated to microbial related-metabolites rather

than to the volatile profile of the cereals/coffee per se. These

observations are consistent with literature [3,9], as these

compounds (except 2-methyl-3-pentanol) were already linked to

microbial spoilage.

Finally, it may be pointed out that with the application of a PCA

within the selected set of the proposed markers, it was possible to

cluster the different types of matrices under study, based on the

level microbial of contamination (Fig. 5). Moreover, with this

selection approach, a better distinction and characterization

accordingly to contamination degree was achieved.

2-Hydroxy-6-methylbenzaldehyde for Mite Detection
2-Hydroxy-6-methylbenzaldehyde was a trace compound for all

matrices under study, with the exception of the oat grains where a

GC peak area was 1.856107 (Table S1, peak number 18 and

pointed in Fig. 2). This compound has been reported as biological

intermediate from several adult mite species that plays a role in

alarm pheromone and sexual behaviour mediator [60,61]. In

order to relate the GC peak area of 2-hydroxy-6-methylbenzalde-

hyde with the presence of mites, mite counting was performed in

all samples using an optical microscope (Fig. 6), and the results are

presented on Fig. 7, in which presents the relation between the

adult mite counting (AMC) and the GC peak area of 2-hydroxy-6-

methylbenzaldehyde for the samples under study.

Microscopically, the morphological characteristics of the life

stages corresponded to the larvae, and male/female adults can be

distinguished (Fig. 6). As this pheromone is produced only in adult

stage [61], only adult specimens were considered for the

correlation of the GC peak area of the concerned compound,

that represent ca. 70% of all mite population detected. Fig. 7

revealed that the samples under study varied in a range of 0 to 190

adult mites per 100 g of sample (AMC 100 g21). Oat grains

exhibited the highest content of adult mites (190 AMC 100 g21),

which was related to the highest GC peak area of 2-hydroxy-6-

methylbenzaldehyde, while for the other matrices the low content

of adult mite per 100 g (0–40) led to a lower GC peak area.

The values obtained for adult mite counting (Fig. 7) are within

the values reported in literature for cereal-based foods, wherein a

wide range of mites can be present [62–64]. For example, after

domestic storage of cereal-based foods, 62% of the samples did not

shown mite contamination, and only 5% of the samples presented

more than 100 mites 100 g21, where the maximum of detected

mites was 1875 100 g21 [63]. Also, in wheat flour consumed by

humans the level of mites was fairly higher, reached the 5200 mites

100 g21 [64]. These tremendous high level of mites in foods, could

lead to problems related to mite allergens, that in the reported

study, provoked anaphylactic reactions, which is especially

expressed by patients that suffer respiratory allergies to mites

[64]. U.S. Food and Drug Administration, recognizes the risk of

ingestion mites in foods and states the need to focus the research

on the health associated problems, by the fact, that those can easily

induce allergic reactions in sensitized individuals [65]. Moreover,

despite the dose/response of inhaled allergens of mites is well

defined, until now, no consensus of dose/response of ingested

allergenic mites has been achieved to scientifically determine what

levels might provoke an allergic reaction [65]. Assuming that mite

contamination is more than aesthetic problem, and considering

the high level of sensitized individuals to mites in developed

countries, the implementation of an easy and rapid approach for

screening mite contamination level in foods is an actual and

imperative challenge.

Conclusions
HS-SPME/GC6GC–ToFMS is proposed as a potential tool for

the parallel assessment of microbiological and mite contamination,

directly in cereals grains and coffee beans, achieving a significant

reduction in time of analysis, compared to standard microbial and

mite count methods. Specifically, 70 min are required for the

complete HS-SPME/GC6GC–ToFMS analysis (extraction plus

GC analysis) which is substantially lower than the time requires by

the conventional plate-count approach (about 72 to 120 h for

bacteria and fungi, respectively), and mite isolation (ca 24 h). HS-

SPME/GC6GC–ToFMS methodology was used to analyse five

types of cereal grains as well as green and roasted coffee. As result,

54 potential microbial volatile metabolites reported in literature or

compounds structurally associated to those. Due to its orthogonal

properties, GC6GC–ToFMS reduced co-elution and improved

the quality of the selection of volatile compounds potentially

related to the microbial contamination. The application of PCA to

analyse results obtained by different methodological approaches

(GC areas and microbial counts) confirmed that the level of

microbiological contamination can be inferred from the profile of

volatile metabolites. Furthermore, the sub-set of six compounds

(methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-

octen-3-ol, and 2-hexanone) considered as microbial related-

metabolites contributed for few advantages of the proposed

approach: i) may increase the specificity of the methodology, as

the selected sub-set is associated to microbiological contamination,

rather than to the intrinsic volatile profile of the cereal grains and

coffee beans; and ii) reduce the complexity of the analysis, allowing

a rapid access of information about microbial contamination.

However, the application of HS-SPME/GC6GC–ToFMS to the

assessment of mite contamination is the major novelty. This new

approach can be regarded as the basis for the development of a

rapid and versatile, method that can be applied in industry to the

simultaneous assessment the level of microbiological contamina-

tion and for detection of mites in cereals grains and coffee beans,

and may be extended to other solid matrices.

Supporting Information

Table S1 Potential microbial volatile compounds identified by

GC6GC–ToFMS in grains of 3 types of rice, oat and wheat and

in green and roasted coffee beans.

(DOC)
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Contributed reagents/materials/analysis tools: ASB NG ÂC AA SMR.
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