78 research outputs found

    Charmonium production at neutrino factories

    Get PDF
    At existing and planned neutrino factories (high energy and high intensity neutrino beam facilities) precision studies of QCD in neutrino-nucleon interactions are a realistic opportunity. We investigate charmonium production in fixed target neutrino experiments. We find that J/ψJ/\psi production in neutrino-nucleon collision is dominated by the color octet 3S1^3S_1 NRQCD matrix element in a neutral current process, which is not accessible in photo or leptoproduction. Neutrino experiments at a future Muon Collider will acquire sufficient event rate to accurately measure color octet matrix element contributions. The currently running high energy neutrino experiments, NOMAD and NuTeV could also observe several such events.Comment: 13 pages Latex, with five embedded eps figures. Cosmetic fixups in the figures, otherwise unchange

    Structural insights into the mechanism of archaellar rotational switching

    Get PDF
    Signal transduction via phosphorylated CheY towards the flagellum and the archaellum involves a conserved mechanism of CheY phosphorylation and subsequent conformational changes within CheY. This mechanism is conserved among bacteria and archaea, despite substantial differences in the composition and architecture of archaellum and flagellum, respectively. Phosphorylated CheY has higher affinity towards the bacterial C-ring and its binding leads to conformational changes in the flagellar motor and subsequent rotational switching of the flagellum. In archaea, the adaptor protein CheF resides at the cytoplasmic face of the archaeal C-ring formed by the proteins ArlCDE and interacts with phosphorylated CheY. While the mechanism of CheY binding to the C-ring is well-studied in bacteria, the role of CheF in archaea remains enigmatic and mechanistic insights are absent. Here, we have determined the atomic structures of CheF alone and in complex with activated CheY by X-ray crystallography. CheF forms an elongated dimer with a twisted architecture. We show that CheY binds to the C-terminal tail domain of CheF leading to slight conformational changes within CheF. Our structural, biochemical and genetic analyses reveal the mechanistic basis for CheY binding to CheF and allow us to propose a model for rotational switching of the archaellum. Signal transduction via phosphorylated CheY is conserved in bacteria and archaea. In this study, the authors employ structural biochemistry combined with cell biology to delineate the mechanism of CheY recognition by the adaptor protein CheF

    A study of backward going pp and π\pi^{-} in νμCC\nu_{\mu}CC interactions with the NOMAD detector

    Get PDF
    Backward proton and π\pi^- production has been studied in νμCC\nu_{\mu}CC interactions with carbon nuclei. Detailed analyses of the momentum distributions, of the production rates, and of the general features of events with a backward going particle, have been carried out in order to understand the mechanism producing these particles. The backward proton data have been compared with the predictions of the reinteraction and the short range correlation models.Comment: 29 pages, 14 figures, submitted to Nucl. Phys.

    Search for heavy neutrinos mixing with tau neutrinos

    Get PDF
    We report on a search for heavy neutrinos (\nus) produced in the decay D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in the NOMAD detector. Both decays are expected to occur if \nus is a component of ντ\nu_{\tau}.\ From the analysis of the data collected during the 1996-1998 runs with 4.1×10194.1\times10^{19} protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the \nus mass range from 10 to 190 MeV\rm MeV. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for future experimental searches. The results obtained are used to constrain an interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde

    Lepton number violating interactions and their effects on neutrino oscillation experiments

    Full text link
    Mixing between bosons that transform differently under the standard model gauge group, but identically under its unbroken subgroup, can induce interactions that violate the total lepton number. We discuss four-fermion operators that mediate lepton number violating neutrino interactions both in a model-independent framework and within supersymmetry (SUSY) without R-parity. The effective couplings of such operators are constrained by: i) the upper bounds on the relevant elementary couplings between the bosons and the fermions, ii) by the limit on universality violation in pion decays, iii) by the data on neutrinoless double beta decay and, iv) by loop-induced neutrino masses. We find that the present bounds imply that lepton number violating neutrino interactions are not relevant for the solar and atmospheric neutrino problems. Within SUSY without R-parity also the LSND anomaly cannot be explained by such interactions, but one cannot rule out an effect model-independently. Possible consequences for future terrestrial neutrino oscillation experiments and for neutrinos from a supernova are discussed.Comment: 28 pages, 2 figures, Late

    Prediction of Neutrino Fluxes in the NOMAD Experiment

    Get PDF
    The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for antinu(mu), and 12% for antinu(e). The energy-dependent uncertainty achieved on the R(e, mu) prediction needed for a nu(mu)->nu(e) oscillation search ranges from 4% to 7%, whereas the overall normalization uncertainty on this ratio is 4.2%.Comment: 43 pages, 20 figures. Submitted to Nucl. Phys.

    Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays

    Full text link
    Results from the nu_tau appearance search in a neutrino beam using the full NOMAD data sample are reported. A new analysis unifies all the hadronic tau decays, significantly improving the overall sensitivity of the experiment to oscillations. The "blind analysis" of all topologies yields no evidence for an oscillation signal. In the two-family oscillation scenario, this sets a 90% C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.

    Inclusive production of ρ0(770),f0(980)\rho^{0}(770), f_0(980) and f2(1270)f_2(1270) mesons in νμ\nu_{\mu} charged current interactions

    Full text link
    The inclusive production of the meson resonances ρ0(770)\rho^{0}(770), f0(980)f_0(980) and f2(1270)f_2(1270) in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the f0(980)f_{0}(980) meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of f2(1270)f_{2}(1270) in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. In addition, the average multiplicity of ρ0(770)\rho^{0}(770) in antineutrino - nucleus interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.

    Search for nu(mu)-->nu(e) Oscillations in the NOMAD Experiment

    Get PDF
    We present the results of a search for nu(mu)-->nu(e) oscillations in the NOMAD experiment at CERN. The experiment looked for the appearance of nu(e) in a predominantly nu(mu) wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are delta m^2 < 0.4 eV^2 for maximal mixing and sin^2(2theta) < 1.4x10^{-3} for large delta m^2. This result excludes the LSND allowed region of oscillation parameters with delta m^2 > 10 eV^2.Comment: 19 pages, 8 figures. Submitted to Phys. Lett.

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.
    corecore