558 research outputs found
Intermittent turbulent dynamo at very low and high magnetic Prandtl numbers
Context: Direct numerical simulations have shown that the dynamo is efficient
even at low Prandtl numbers, i.e., the critical magnetic Reynolds number Rm_c
necessary for the dynamo to be efficient becomes smaller than the hydrodynamic
Reynolds number Re when Re -> infinity. Aims: We test the conjecture (Iskakov
et al. 2007) that Rm_c actually tends to a finite value when Re -> infinity,
and we study the behavior of the dynamo growth factor \gamma\ at very low and
high magnetic Prandtl numbers. Methods: We use local and nonlocal shell-models
of magnetohydrodynamic (MHD) turbulence with parameters covering a much wider
range of Reynolds numbers than direct numerical simulations, but of
astrophysical relevance. Results: We confirm that Rm_c tends to a finite value
when Re -> infinity. The limit for Rm -> infinity of the dynamo growth factor
\gamma\ in the kinematic regime behaves like Re^\beta, and, similarly, the
limit for Re -> infinity of \gamma\ behaves like Rm^{\beta'}, with
\beta=\beta'=0.4. Conclusion: Comparison with a phenomenology based on an
intermittent small-scale turbulent dynamo, together with the differences
between the growth rates in the different local and nonlocal models, indicate a
weak contribution of nonlocal terms to the dynamo effect.Comment: 5 pages, 6 figure
Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model
Models of large scale (magnetohydrodynamic) dynamos (LSD) which couple large
scale field growth to total magnetic helicity evolution best predict the
saturation of LSDs seen in simulations. For the simplest so called "{\alpha}2"
LSDs in periodic boxes, the electromotive force driving LSD growth depends on
the difference between the time-integrated kinetic and current helicity
associated with fluctuations. When the system is helically kinetically forced
(KF), the growth of the large scale helical field is accompanied by growth of
small scale magnetic (and current) helicity which ultimately quench the LSD.
Here, using both simulations and theory, we study the complementary
magnetically forced(MF) case in which the system is forced with an electric
field that supplies magnetic helicity. For this MF case, the kinetic helicity
becomes the back-reactor that saturates the LSD. Simulations of both MF and KF
cases can be approximately modeled with the same equations of magnetic helicity
evolution, but with complementary initial conditions. A key difference between
KF and MF cases is that the helical large scale field in the MF case grows with
the same sign of injected magnetic helicity, whereas the large and small scale
magnetic helicities grow with opposite sign for the KF case. The MF case can
arise even when the thermal pressure is approximately smaller than the magnetic
pressure, and requires only that helical small scale magnetic fluctuations
dominate helical velocity fluctuations in LSD driving. We suggest that LSDs in
accretion discs and Babcock models of the solar dynamo are actually MF LSDs.Comment: 12 pages, 34 figure
Morphological Variation between Life and Death Gastropod Populations in the Nile Delta: A Pollution-Induced Evolution
Wetland ecosystems of the Nile Delta face severe threats due to natural climatic changes and anthropogenic activities. Life and death assemblage comparisons can be implemented as a historical record to detect anthropogenic-induced environmental changes in the past few decades. A geometric morphometric approach was applied to quantify the pollution-induced morphological variation between life and death populations of the gastropod Melanoides tuberculata. The results indicated that life populations differ significantly from the death ones, where the first tend to be much smaller, more globular, and with a depressed aperture and whorl section. In addition, the phenetic diversity of the life populations was also decreased, and the allometric growth was shifted. These morphological changes in the life populations are well-known adaptations for reducing the cost of shell maintenance in polluted water. No distinct morphospace was found between life populations from different habitats, suggesting that habitats have no significant role in the current pollution-induced evolution.This work is funded by the Researchers Supporting Project number (RSP2023R455), King Saud University, Riyadh, Saudi Arabia
General solutions of the Wess-Zumino consistency condition for the Weyl anomalies
The general solutions of the Wess-Zumino consistency condition for the
conformal (or Weyl, or trace) anomalies are derived. The solutions are
obtained, in arbitrary dimensions, by explicitly computing the cohomology of
the corresponding Becchi-Rouet-Stora-Tyutin differential in the space of
integrated local functions at ghost number unity. This provides a purely
algebraic, regularization-independent classification of the Weyl anomalies in
arbitrary dimensions. The so-called type-A anomaly is shown to satisfy a
non-trivial descent of equations, similarly to the non-Abelian chiral anomaly
in Yang-Mills theory.Comment: 9 pages. RevTeX fil
The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics
Invariance properties of physical systems govern their behavior: energy
conservation in turbulence drives a wide distribution of energy among modes,
observed in geophysical or astrophysical flows. In ideal hydrodynamics, the
role of helicity conservation (correlation between velocity and its curl,
measuring departures from mirror symmetry) remains unclear since it does not
alter the energy spectrum. However, with solid body rotation, significant
differences emerge between helical and non-helical flows. We first outline
several results, like the energy and helicity spectral distribution and the
breaking of strict universality for the individual spectra. Using massive
numerical simulations, we then show that small-scale structures and their
intermittency properties differ according to whether helicity is present or
not, in particular with respect to the emergence of Beltrami-core vortices
(BCV) that are laminar helical vertical updrafts. These results point to the
discovery of a small parameter besides the Rossby number; this could relate the
problem of rotating helical turbulence to that of critical phenomena, through
renormalization group and weak turbulence theory. This parameter can be
associated with the adimensionalized ratio of the energy to helicity flux to
small scales, the three-dimensional energy cascade being weak and self-similar
Accretion Disks and Dynamos: Toward a Unified Mean Field Theory
Conversion of gravitational energy into radiation in accretion discs and the
origin of large scale magnetic fields in astrophysical rotators have often been
distinct topics of research. In semi-analytic work on both problems it has been
useful to presume large scale symmetries, necessarily resulting in mean field
theories. MHD turbulence makes the underlying systems locally asymmetric and
nonlinear. Synergy between theory and simulations should aim for the
development of practical mean field models that capture essential physics and
can be used for observational modeling. Mean field dynamo (MFD) theory and
alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century
MFD theory has more nonlinear predictive power compared to 20th century MFD
theory, whereas accretion theory is still in a 20th century state. In fact,
insights from MFD theory are applicable to accretion theory and the two are
artificially separated pieces of what should be a single theory. I discuss
pieces of progress that provide clues toward a unified theory. A key concept is
that large scale magnetic fields can be sustained via local or global magnetic
helicity fluxes or via relaxation of small scale magnetic fluctuations, without
the kinetic helicity driver of 20th century textbooks. These concepts may help
explain the formation of large scale fields that supply non-local angular
momentum transport via coronae and jets in a unified theory of accretion and
dynamos. In diagnosing the role of helicities and helicity fluxes in disk
simulations, each disk hemisphere should be studied separately to avoid being
misled by cancelation that occurs as a result of reflection asymmetry. The
fraction of helical field energy in disks is expected to be small compared to
the total field in each hemisphere as a result of shear, but can still be
essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and
Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28
August 2011 at the Abdus Salam International Centre for Theoretical Physics,
Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica
Scripta (corrected small items to match version in print
Intermittency of interstellar turbulence: Parsec-scale coherent structure of intense velocity-shear
Guided by the duality of turbulence (random versus coherent we seek coherent
structures in the turbulent velocity field of molecular clouds, anticipating
their importance in cloud evolution. We analyse a large map (40' by 20')
obtained with the HERA multibeam receiver (IRAM-30m telescope) in a high
latitude cloud of the Polaris Flare at an unprecedented spatial (11") and
spectral (0.05 km/s) resolutions in the 12CO(2-1) line. We find that two
parsec-scale components of velocities differing by ~2 km/s, share a narrow
interface ( pc) that appears as an elongated structure of intense
velocity-shear, ~15 to 30 km/s/pc. The locus of the extrema of
line--centroid-velocity increments (E-CVI) in that field follows this
intense-shear structure as well as that of the 12CO(2-1) high-velocity line
wings. The tiny spatial overlap in projection of the two parsec-scale
components implies that they are sheets of CO emission and that discontinuities
in the gas properties (CO enrichment and/or increase of gas density) occur at
the position of the intense velocity shear. These results disclose spatial and
kinematic coherence between scales as small as 0.03 pc and parsec scales. They
confirm that the departure from Gaussianity of the probability density
functions of E-CVIs is a powerful statistical tracer of the intermittency of
turbulence. They disclose a link between large scale turbulence, its
intermittent dissipation rate and low-mass dense core formation
A novel type of intermittency in a nonlinear dynamo in a compressible flow
The transition to intermittent mean--field dynamos is studied using numerical
simulations of isotropic magnetohydrodynamic turbulence driven by a helical
flow. The low-Prandtl number regime is investigated by keeping the kinematic
viscosity fixed while the magnetic diffusivity is varied. Just below the
critical parameter value for the onset of dynamo action, a transient
mean--field with low magnetic energy is observed. After the transition to a
sustained dynamo, the system is shown to evolve through different types of
intermittency until a large--scale coherent field with small--scale turbulent
fluctuations is formed. Prior to this coherent field stage, a new type of
intermittency is detected, where the magnetic field randomly alternates between
phases of coherent and incoherent large--scale spatial structures. The
relevance of these findings to the understanding of the physics of mean--field
dynamo and the physical mechanisms behind intermittent behavior observed in
stellar magnetic field variability are discussed.Comment: 19 pages, 13 figure
Flow and magnetic structures in a kinematic ABC-dynamo
Dynamo theory describes the magnetic field induced by the rotating, convecting and electrically conducting fluid in a celestial body. The classical ABC-flow model represents fast dynamo action, required to sustain such a magnetic field. In this letter, Lagrangian coherent structures (LCSs) in the ABC-flow are detected through Finite-time Lyapunov exponents (FTLE). The flow skeleton is identified by extracting intersections between repelling and attracting LCSs. For the case A = B = C = 1, the skeleton structures are made up from lines connecting two different types of stagnation points in the ABC-flow. The corresponding kinematic ABC-dynamo problem is solved using a spectral method, and the distribution of cigar-like magnetic structures visualized. Inherent links are found to exist between LCSs in the ABC-flow and induced magnetic structures, which provides insight into the mechanism behind the ABC-dynamo
- …