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Abstract: Wetland ecosystems of the Nile Delta face severe threats due to natural climatic changes and
anthropogenic activities. Life and death assemblage comparisons can be implemented as a historical
record to detect anthropogenic-induced environmental changes in the past few decades. A geometric
morphometric approach was applied to quantify the pollution-induced morphological variation
between life and death populations of the gastropod Melanoides tuberculata. The results indicated that
life populations differ significantly from the death ones, where the first tend to be much smaller, more
globular, and with a depressed aperture and whorl section. In addition, the phenetic diversity of the
life populations was also decreased, and the allometric growth was shifted. These morphological
changes in the life populations are well-known adaptations for reducing the cost of shell maintenance
in polluted water. No distinct morphospace was found between life populations from different
habitats, suggesting that habitats have no significant role in the current pollution-induced evolution.

Keywords: water pollution; coastal ecosystems; gastropod shells; geometric morphometrics; phenetic
diversity; Nile Delta

1. Introduction

Coastal habitats have been altered over the past century due to various anthropogenic
influences and climatic crises [1–3]. Therefore, these habitats have been degraded, water
quality was negatively impacted, and the hydraulic regimes were shifted [4–7]. According
to many research studies published recently [8–12], water quality in the Nile Basin has
deteriorated due to various anthropogenic factors controlling its suitability for agricultural
and drinking purposes. Understanding the species–environment interactions and their
potential impact on ecosystems is a primary goal for conservation studies [13]. In addition,
understanding the mechanisms underlying the origin and maintenance of biodiversity
is a central goal of modern ecological and evolutionary research [14]. Life and death
assemblage comparisons were continuously implemented to detect environmental change
and record anthropogenic stress and events over a small-time scale or when historical data
are unavailable [15–21].

Comparisons usually focus on assemblage composition (community level). However,
live–dead morphological variations at the species level can also detect environmental
changes, although it is less explored. In contrast to shape, size comparisons received
considerable investigations [22–25]. Very little research has been conducted on shape
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changes [26–28]. Geometric morphometrics of live and dead molluscs indicated that
morphometric differences had recorded fine-scale spatiotemporal patterns of environmental
change [28].

The inexpensive geometric morphometrics approach was implemented as a potential
pollution monitoring tool based on live collected specimens from separated polluted and
unpolluted areas [29–36]. Few studies have used historical live-collected specimens and/or
specimens from archaeological middens as controls [34,37]. Consequently, physicochemical
environmental factors rather than pollution could also affect shell shape (e.g., predation
intensity, wave energy, oxygen level, temperature, and water chemistry [28,38]).

Adapting populations to local environmental conditions/pollution drives natural
selection, which is a central assumption of evolutionary theory. However, the ecologi-
cal mechanism behind the adaptive evolutionary change remains unclear [39]. Spatial
and temporal phenotypic variations will better understand the genetic and phenotypic
divergence in response to habitat variation [40]. Among the primary purposes of this
study is the use of the GM approach to quantify the phenotypic variation in the Melanoides
tuberculta as a model for understanding the ecological consequences of eutrophication and
environmental pollution, which may drive or shift evolutionary changes, and to answer the
following research questions: (a) what variables may relate to variation in morphology over
a short-term period; (b) does pollution, natural environmental variables, or both drive the
morphological variations; and (c) are variations (i.e., breadth) in morphology temporarily
decreased due to directional selection?

Methods adopted for assessing surface water quality based on biological indicators
have been undergoing development for many years and are still being improved. Over the
years, substantial biological water quality assessment methods have been developed [41].
Such methods are increasingly incorporated into technological solutions, i.e., biosensors
or biologically active deposits in water purification. The advantage of biological methods
is that water quality assessment is conducted in the way that a living organism would
react to pollution. Research based on biological methods is often less expensive and time-
consuming since some stages of sample preparation can be omitted. The advantage of
such methods is that the analysis can be conducted in a laboratory and the natural habitat
of the organisms used for testing. In Egypt and during the past few decades, there were
downstream changes in the water quality of the Nile River, primarily due to a combination
of land and water use as well as water management interventions such as (a) different
hydrodynamic regimes regulated by the Nile barrages, (b) agricultural return flows, and
(c) domestic and industrial waste discharges, including oil and wastes from passenger and
river boats. These changes are more pronounced as the river flows through the densely
populated urban and industrial centers of Cairo and the Delta region. Pollution of the
surface water by agricultural drainage water, industrial wastewater, domestic solid waste,
and wastewater seriously threatens the quality of irrigation and potable water supply [42].

According to the National Water Resources Plan, it also frustrates government plans
for downstream reuse of drainage water, which is a critical element of its strategy to
cope with water scarcity. Furthermore, the industry is a growing sector in the national
economy. Further industrial development is expected to significantly affect the country’s
socioeconomic development, employing a large part of the growing population. Although
the industrial policy is to create new cities and industrial zones outside the Nile Valley and
Delta, there is still much industrial development. Moreover, through rapidly spreading
informal urbanization [43], land fragmentation is increasing [44], indirectly affecting the
water system. In summary, there is enormous pressure on the quality and quantity of water
in the Delta, resulting from intensifying agriculture, a rapidly growing industry, and a
rapidly growing population. In addition to the anthropogenic influences, climate change
(sea-level rise and high temperature) is expected to intensify the water problem in Egypt in
the near future.

Herein, we will test the research hypothesis by comparing gastropod populations from
different habitats with different physicochemical conditions (spatial scale) and, at the same
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time, collect both death assemblages that represent historical records and life populations
that represent the present-day environment.

2. Materials and Methods
2.1. Study Area and Sampling

In Egypt, Lake Manzala is a vital fisheries resource in the Nile River Delta, account-
ing for over 30 percent of all commercial and recreational fish landed and consumed in
Egypt [45]. However, Lake Manzala has been classified as one of the most polluted lakes in
Egypt [46,47]. Since Aswan High Dam was completed, the hydrodynamics and turbidity
of the lakes have dramatically decreased [48]. The sediment of these lakes after Aswan
High Dam, occasionally also in Manzala, is polluted mainly by Mn, Pb, Zn, and Cd, due to
the direct human input from neighboring megacities, where the petrochemical industry is
considered to be a significant source [48]. Aridity and low precipitation clog the flushing
out of these heavy metals, as in the case of humid lakes [47].

Environmental pollution in Lake Manzala and its main drainage channels have previ-
ously been documented by measuring the concentrations of selected trace metals in fish
and sediment samples [49]. Sources of contaminants in Lake Manzala include untreated
sewage, atmospheric deposition, and agricultural and industrial wastes, which may impact
human health when fish are consumed [50]. Freshwater inputs to the lake are insufficient
to provide adequate sea flushing. Therefore, trace metals entering the system are expected
to accumulate over time [45].

A sampling campaign was carried out in May 2018 on Manzala Lagoon. The wa-
ter chemistry and physical properties, e.g., hydrogen level (pH) and electric conductiv-
ity (EC), were measured on the surface water. The total dissolved solids (TDSs) were
calculated from the EC values at average surface water temperature using the formula
EC/10001.0878 × 0.4365 (Table 1), and they were used as an approximation for the water
salinity. The chemical parameters of the water were measured at each site using Xplorer
GLX–PS–2002 (Pasco, Roseville, CA, USA). Using the 20 × 20 cm Ekman grab, we collected
the top 10–15 cm of sediments, which, according to earlier studies [48], were deposited
after the construction of the Aswan High Dam. Sampling was carried out on four sites
(Figure 1). Three replicates were sampled and sieved manually using a 0.5 mm mesh. The
gastropod shells were sorted in the field. The water depth reached by the grab was also
recorded at each site (Table 1). All shells greater than 0.5 mm were separated and prepared
for systematic identification. Living shells of the gastropod M. tuberculata were separated
from dead ones. The examined species Melanoides tuberculata lives in and on the bottom
sediments. The two sites yielded < 50 living shells and, therefore, were excluded from
the morphometric analyses, as previous investigations [30] suggested that a small sample
will result in non-significant results (i.e., not appropriate for statistical analyses, and it
could provide unreliable estimates of trajectories). The final analyzed material includes
four death populations and only two life populations from four sites in the Manzala lagoon
(Figure 1).

Table 1. Physicochemical variables that were measured at the four studied sites including the water
characteristics and the grain size proportion of the sediments.

Site Depth (m) Water Sediments

pH EC (µS/cm) TDS Sand (%) Silt (%) Mud (%)

1 0.8 6.8 20,654 11.5 63.4 10.5 30.4
2 1.2 7.1 10,248 5.6 52.0 8.8 20.0
3 4.2 9.1 42,852 24.2 98.5 0.3 0.2
4 2.3 8.9 44,133 25.1 96.3 2.3 0.8
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Figure 1. Location of the studied populations in the Manzala lagoon, Nile Delta. (a) Map of Egypt
showing the position of the Manzala Lagoon (red square) and Aswan High Dam; (b) location of the
studied populations; (c) Nile Basin; (d) high-energy water at site 4; and (e) low-energy polluted water
at site 2.

In addition, the sediment grain size was calculated using an electric shaker (EN 932-5,
SysMo Ltd., Saint-Gilles, Belgium) for 200 g of the sediments following [51] (Table 1). In
the laboratory, 0.2 g of shells, which were crushed and sieved through a 0.63 mm mesh
screen, 1 mL of water aliquot, and 3 mL of a concentrated HNO3 and HCl (1:1) were mixed
and diluted to 10 mL with ultra-pure water (Milli–Q). Then, the samples were filtrated
for 5 min through a centrifuge. Heavy metals, including Zn, Cd, Cr, Pb, and Cu, were
analyzed using inductively coupled plasma optical emission spectrometry (ICP–OES) at the
Institute of Geology and Geophysics, Chinese Academy of Sciences (Beijing, China). The
applied analytical method was continuously checked using a certified reference material
(GSB04–1767–2004) from the National Research Center for Nonferrous Metals and Electronic
Materials (Beijing, China) to ensure the quality of the performed analyses. The metals
analyses’ practical quantitation limits (PQLs) were in the range of 0.01–0.05 mg Kg−1.
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2.2. Geometric Morphometrics

A landmark-based geometric morphometric was implemented. Images of 50 indi-
viduals from each site were captured using a Nikon × 50 digital camera attached to a
LEICA stereomicroscope (Leica Microsystems, Wetzlar, Germany). To avoid errors from
capturing 2D images of a 3D object, we followed the same procedure in [30], which includes
identifying leveling points on the shells and rotating the tilted image to specific points. A
total of 24 landmarks were chosen based on previous investigations on the shells of the
Melanoides tuberculata [31]. Using the TPS Package, these landmarks were digitized and
preserved (available from https://www.sbmorphometrics.org/soft-dataacq.html, accessed
on 14 October 2020 [52]). Generalized Procrustes Analysis (GPA) was applied to the coordi-
nate’s data using the method provided in [53]. Landmark configurations were translated,
scaled, and rotated until the distances among homologous landmarks were minimized
according to least squares criteria. The resulting data were considered due to shape only.

The Procrustes residual data were projected to Principal Component Analysis (PCA),
which compares inter and intraspecific variation among the variables/groups (landmarks
coordinates/different populations). Thin Plate Spline (TPS) was also implemented, which
represents the shape changes when one specimen is deformed into another. Furthermore,
the Relative Warp (RW) scores of each specimen were used to map their location on RW
axes [54,55]. The distribution of the individuals examined in the RW axes/morphospace
represents shape changes among individuals and populations and may reflect the speciation
process or phylogenetic relationship [56].

Size data were extracted before performing the Procrustes transformation to compare
size among different samples separately. The shell height/width, whorl height/width,
aperture length/width, spire height, and body whorl height were all calculated from the
landmarks prior to the Procrustes to characterize the shell shape of the M. tuberculata. All
specimens’ shell height and width determined the geometric mean. Frequency histograms
were plotted using a size-class interval, reducing empty spaces as much as possible. Size-
frequency distributions were compared to a normal distribution using a Shapiro–Wilk test
and the QQ plot [57]. All morphometrics and statistical analyses were conducted using
PAST V. 2.17c [58].

3. Results
3.1. Environmental Factors

The four sites have different physicochemical conditions: sites 1 and 2 have muddier
(20–30%) bottom sediments, while sites 3 and 4 are more sandy (96–98%, Table 1). In
addition, sites 1 and 2 have lower pH levels, low salinity (5–11%), and shallower water
depths. Furthermore, sites 1 and 2 have higher Cu, Pb, and Zn concentrations. Abdelhady
et al. [45] classified the lagoon into highly polluted and unpolluted areas based on Sediment
Quality Guidelines (SQGs) and pollution indices including the pollution load index (PLI),
enrichment factor (EF), contamination factor (CF), and the geo-accumulation index (Igeo).
The metals measured herein agree with Abdelhady et al. [31], where living populations at
sites 1 and 2 have higher concentrations of Cu, Pb, and Zn (classified herein as polluted),
while sites 3 and 4 have lower concentrations of these metals (classified herein as unpolluted
(Table 2)). Note that as both life and death populations are collected from the same site; the
physicochemical variables of both types of populations are the same.

Table 2. Metals’ concentration on the shells of the studied populations compared to limits given in
the literature [59–61].

Population
Metals Concentration (µg/Kg)

Cd Cr Cu Pb Zn

1 1.5 47.16 45.4 162.5 91.06
2 1.508 6.2 16.31 2.788 15.37
3 1.43 5.78 12.33 2.514 14.24

https://www.sbmorphometrics.org/soft-dataacq.html
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Table 2. Cont.

Population
Metals Concentration (µg/Kg)

Cd Cr Cu Pb Zn

4 1.272 4.66 10.02 0.196 11.35
5 1.06 8 13.75 10.18 36.24
6 0.888 4.13 7.39 0 9.49

Goher et al. [59] 0.2 30.8 21.8 10.9 35.4
Earth crust [60] 0.15 100 55 12.5 70

ERL [61] 1.2 81 34 46.7 150
ERM [61] 9.6 370 270 218 410

3.2. Quality of the Data

To assess the sufficiency of the included specimens and to exclude probable sampling
bias, cumulative plots for the average centroid sizes, i.e., the square root of the sum of
the squared distances of the measured landmarks to their common centroid [62], were
calculated prior to the Procrustes to be used as estimates of the overall sizes of the specimens
of each population of the six populations. The cumulative plot from all sites indicates that
after including 220–225 specimens, there will be no or only minor changes in the cumulative
average (i.e., additional specimens will not add or change the population average and
hence the intended analyses (Figure 2)).
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3.3. Size Variation

The centroid size, calculated prior to the Procrustes, was used to estimate the overall
size. The shells from the life populations (1 and 2) have less height than the dead ones
(Figure 3). Populations 4–6 show a higher frequency of small individuals than samples
1–2. The size-frequency distribution of the shells from the life populations is skewed
strongly toward the smaller sizes (<24 mm). In contrast, the death populations (3–6) have a
more uniform distribution. In addition, there is less size variation for the life populations
compared to a higher variability for the death ones (Figure 3). Both the Box plot (Figure 3A)
and the histograms (Figure 3B) indicate these patterns. The height/width plots of all taxa
show a distinct linear correlation (Figure 4). However, a distinct separation between the life
(1 and 2) and the death populations is quite evident based on the height/length diagrams,
where the life populations have a lower height/width ratio (lower y-values; Figure 4). The
latter suggests that the allometric growth pattern has been altered in populations living in
polluted water.
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axis of the populations from polluted sites. (B) Size-frequency histograms of the studied population.
Life populations have narrower curves and slightly right-skewed histograms (smaller size).
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3.4. Shape Variation
3.4.1. Ordination

The morphological variability within and between the shells from different samples
is described by the shell shape. The PCA plots illustrate the morphological variability
of life versus death populations (Figure 4). PC Axis 1 represents an evident gradient in
the ordination of specimens. PC 1 (49%) is strongly influenced by relative shell height,
where individuals become slenderer from left to right. This is clearer from the RMA linear
regression between PC Axis 1 and the shell height/shell width ratio, where a significant
negative correlation was found (p = 0.001, r = 0.41; Figure 5B). Although PC 2 (17%) is
difficult to link to specific shell parameters, whorl shape and inclination represent a relative
trend toward more inclined sutures.
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The PCA plot shows weak morphological overlap between the life populations (1–2)
and the death populations (samples 3–6). Furthermore, a substantial overlap among life
populations 1 and 2 suggests that environmental conditions have no significant impact on
phenotypic variations. Low PC Axis 1 scores are obtained when the shell has a globular
body whorl and a relatively low spire, whereas high scores are associated with a shell with
a narrow body whorl and narrow aperture (Figure 5A). This means that individuals from
the death populations have a more slender and narrow shell shape. Note that variation
decreases in life populations, where they are plotted very closely (Figure 5A; see also
Figure 3A).

The results from CVA retained the same pattern, where populations 1 and 2 do not
overlap with samples 5 and 6. Furthermore, samples 4 and 5 have wide variation and
overlap with proceeding samples 5 and 6 and succeeding samples 1 and 2 (Figure 5C). The
latter may result from mixing different generations in death populations (time-averaged
populations), where modern specimens living under current environmental conditions
(polluted water) are mixed with older ones. In contrast, there is minimal variation within
life populations, indicating a decrease in phenotypic breadth, and this may be attributed to
the fact that they represent the same generation.

3.4.2. Thin Plate Spline

The TPS grids show a similar topology to ordinations, where populations 1 and 2
contain less calendrical and more globular species. However, the complicated grid pattern
suggests that the variation is not limited to single-shape variables (Figure 6). To test the
latter further, and as there is a variation on more than two shape characters, a representative
individual from the populations was selected, and the shapes of specific characters were
redrawn on these individuals with simplified geometric lines. Shell height/width was
simplified as a dimension’s rectangle, while the apical angle was redrawn as a triangle
connecting the two tangents of the spire connected at the apex. In addition, whorl sections
were redrawn as simplified perpendicular lines (Figure 7). To visualize the shape variation
among the different populations, the simple redrawn shapes were moved one above another
and aligned at specific corners/edges (first-order landmark (Figure 7)). The simplified lines
indicate that life populations have more globular shells with depressed whorl sections and
smaller apertures (Figure 7).
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4. Discussion
4.1. Sexual versus Asexual Reproduction

There are two main results of the geometric morphometric analyses: (1) a significant
difference in shell shape between life and death assemblages and (2) a decreasing morpho-
logic breadth in life populations. The variation among life and death assemblages could be
attributed to many variables. Decreasing morphologic breadth can be attributed to a mix-
ture of sexual and asexual reproduction of M. tuberculata, where an asexual reproduction
may have resulted in less morphological diversity in contrast to a sexual one. M. tuberculata
is capable of both sexual and asexual reproduction [63]; however, asexual reproduction is
the more common one [64], which may result in rapid population growth but probably
less genetic variability. If this is the case, why does M. tuberculata change its reproduction
strategy on life and not death assemblages?

4.2. Directional Selection

Another possibility is directional selection, a mechanism for natural selection, in
which allele frequency within a population shifts over time toward an extreme phenotype
because of differences in the survival and rate of different phenotypes [62]. The changing
environment will determine which phenotype will survive. Any species consists of a
variety of distinct morphs, where the generalist nature makes it able to inhabit a wide range
of aquatic environments regardless of resource availability [63]. The morphological breadth
decreased in life populations 1 and 2 (Figure 5A). In addition, smaller globular shells
became the dominant phenotype in the same direction (Figure 7), suggesting that directional
selection is the prevailing natural selection mechanism in the studied populations. Ref. [64]
indicated that environmental perturbations restrict niche availability and may decrease
the phenotypic diversity, where a single or a few morphs can survive, which is the case in
life populations.

All specimens of populations 1 and 2 have smaller specimens characterized by a
relatively small height and large width. The size differences among the studied populations
are well illustrated by the boxplot (Figure 3A), where life populations have a smaller
mean shell height with a slight variance relative to death populations. Similarly, the size-
frequency distributions differ significantly between life and death populations (Figure 3B).
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Similarly, the variability of populations from the polluted sample on the histogram is also
minimal (few size classes and narrower curve). The distinctive differences in shell size
between life and death populations may suggest a directional selection toward smaller
individuals in the current environment. The less size-variability of the populations from the
polluted samples resembles the less variability on the PC Axis 1 (shaded area in Figure 5A).

4.3. Predation Intensity

Ref. [5] found an upward-increased abundance of M. tuberculata in the core sediments.
This increase in population density can comment on the smaller size of life populations.
The smaller body size is faster and more agile, and it needs less food and thus is better at
surviving when food is limited. The variability of population structures among samples
is more likely a result of variations in growth and mortality rates, possibly related to
differences in the physical and chemical environment and/or biotic variables (high density
and competition for food/habitats).

Furthermore, temporal variability of predation pressure by fishes could directly in-
fluence the population structure by reducing intraspecific competition [65]. However,
according to [66–68], reducing intraspecific competition for resources is one of this species’
most successful invasion strategies. Ref. [69] found that gastropods in fish-free ponds had
narrow shells with a well-developed spire, whereas snails that coexisted with fish had more
rotund shells with a low spire (a shell morphology known to increase the survival rate
from shell-crushing predators). Can predation drive the morphologic variation in Manzala
lagoon? There is no evidence of a change in predation intensity in the past few decades,
so the answer will be negative. Moreover, Ref. [70] found that fish diversity (potential
predators) is declining in the lagoon, suggesting that they cannot be the driving force
behind the morphologic changes in life populations. Therefore, the small life populations
of Melanoides tuberculata may be attributed to abiotic rather than biotic variables.

4.4. Taphonomic Distortion

The very distinct and relatively more minor shell size may be physical (i.e., size sorting
by waves or currents) rather than biological. In order to assess the origin of the smaller size
at site 1, a histogram based on the geometric-mean size and QQ plot was drawn (Figure 8),
and the population was tested for normality. As there was no evidence to exclude that the
population can be normally distributed (p < 0.001; Figure 8), the population may represent
an autochthonous community without post-mortem or taphonomic distortion, and the
relatively smaller size is biologic [60].
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4.5. Allometric Growth

Allometry, the change of a quantitative character with variation in overall body size,
may affect the results of shape variation in the studied populations. Individuals of different
sizes also have different shapes in almost all organisms [71]. A linear regression model
between the shell height and shell widths indicated a clear linear correlation (r = 0.96;
Figure 4). However, a separation among the different populations on the linear plot is still
evident, where the linear trend of the polluted areas is less steep (wider shells (Figure 4)),
suggesting that the allometric growth pattern was shifted in life populations. Gastropod
shell shapes depend on size (i.e., the shape differences between the taxa are partly an
indirect consequence of the selection of body size [72]. However, the linear correlation
between the life and death populations is highly similar, even when only the same size
classes are compared. Therefore, the shape variation may be related to other environmental
or ecological traits rather than allometry.

4.6. Pollution-Induced Evolution

The reactions of living organisms to pollution are manifested by physiological, mor-
phological, and behavioral changes [73]. Dunithan et al. [74] suggest that morphological
variation ensures a wide distribution and maximizes local success for an aquatic gastropod
in various environments. Abdelhady et al. [31] found that water pollution has induced
morphologic variation between populations living in polluted and non-polluted habitats
(i.e., pollution-induced natural selection). The size decrease in more eutrophic Polish
lakes has been previously observed [75]. As there are no variations between the two life
populations from habitats with different settings (silt vs. sand-dominated substrate, low
vs. high salinity, and low vs. high wave energy), habitats have no or a minor role in
driving the morphologic variations. In contrast, water pollution mainly drives the observed
morphologic variations among life and death populations.

Freshwater gastropods were continuously used as model organisms for analyzing
phenotypic plasticity [38]. Abiotic factors such as temperature, current, and salinity were
found to influence the shell morphology based on significant laboratory and field obser-
vations [76,77]. In contrast to our results, [74] examined the covariation of morphology in
North American freshwater gastropod Elimia livescens with regional environmental vari-
ables and found that the shape of E. livescens varied significantly with flow intensity, water
temperature, conductivity, and substrate type. They found that individuals with smaller
apertures and streamlined shapes occurred in smaller watersheds in the southeastern
regions of Indiana and local habitats with low water flow and conductivity. The latter sug-
gests a significant role for habitats, which is not seen here in the Manzala lagoon. Similarly,
Ref. [78] indicated that the morphology of molluscs U. delphinus shells might be influenced
by the water flow, where estuarine shells are more elongated, while riverine shells are more
subovated. Based on molecular and morphological data, Márquez et al. [79] found that the
gastropod Trophon geversianus shell polymorphisms represent habitat-specific constraints
(e.g., intertidal vs. subtidal habitat). Furthermore, [80] suggested that geographic isolation
is the main controlling factor of the morphological variation, while evolution and living
habitat are less significant.

Recently, considerable research was conducted to test the impact of water pollution
on species morphology, and there is increasing evidence supporting a pollution-induced
evolution (phenotypic differentiation). Pollution may influence the molluscan macroben-
thos in a variety of ways. In addition to causing the local extirpation of taxa within the
lagoon [45,81], pollution-induced stress is hypothesized to suppress molluscan growth
rates [82,83]. Marshal et al. [30] found that gastropod Planaxis sulcatus and Echinolittorina
nodosus have more globular shells and smaller apertures in polluted water. Similarly, and
based on a shape comparison between present-day specimens of the gastropod B. globulosus
from the harbor zone and those collected before the increase of maritime activity and
pre-Hispanic archaeological Middens, Ref. [37] demonstrated that pollution produces a
globular shell shape. This effect probably allows gastropods to isolate themselves from the
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external adverse environment. Only individuals that can tolerate higher metal concentra-
tions and/or eutrophication can survive (survival of the fittest), while other morphs will
go extinct. This can explain the general decrease in the morphological breadth of the M.
tuberculata life populations in the studies’ sites.

The size decrease in more eutrophic Polish lakes has been observed previously [75].
Ref. [84] indicated that eutrophication led to the dominance of small-bodied taxa. Vonlan-
then et al. [85] found that eutrophication has resulted in genetic and functional distinctive-
ness among fish species. Anthropogenic eutrophication may intensify dissolved oxygen
depletion, affecting the benthic communities [86]. According to Ali et al. [72], the small
body size and aperture in gastropods from the Western Desert of Egypt could be attributed
to aridity, where low precipitation and higher temperatures might limit food resources. As
many gastropod shapes depend on size, the shape differences between the taxa are partly
an indirect consequence of the selection of body size. In contrast, the reduction of aperture
size may directly affect the temperature. Furthermore, the shell size, which depends on the
shell calcification rate, is mainly controlled by atmospheric CO2 concentration and water
chemistry. The supersaturated carbonate water has higher calcification rates, producing
larger and thicker shells. Finally, although morphologic variations are expected to occur
naturally, anthropogenic activities may also impact the rate at which these changes occur.
This view is supported by higher estimates of the rate of change/evolution in populations
influenced by human activity compared to populations that are less influenced in such a
way [87].

4.7. Taphonomy versus Ecology

Differences in the size of dead and live shells can indicate different factors [88]: (1) post-
mortem distortion due to physical agents such as waves or currents; (2) mass mortality
due to environmental crises (e.g., anoxia or water pollution), (3) limitation of nutrients and
competition for food, and (4) aging. Herein, life and death populations were collected from
the same environment; therefore, the first factor (post-mortem distortion) is excluded. A
skewed size-frequency distribution toward larger shells can indicate that the population
is aging [89]. However, calculated life expectancies of gastropods indicated 0.74, 0.9, and
0.5 years for the first, second, and third years, respectively, confirming a normal size
distribution frequency [90] under natural environmental conditions. Normal size frequency
distribution is indicative of natural mortality [91], while uneven distribution is indicative of
anthropogenic environmental deterioration [60] or human exploitation [92,93]. In normal
or low-stress environments, symmetric, unimodal, bell-shaped curves, and slightly left-
skewed due to the higher mortality of adults, are expected [94]. Moreover, empty shells
of M. tuberculata collected from freshwater pools in Jordon have normal distribution [95].
Therefore, a normal distribution was expected in the study lagoon, and, therefore, we
have assessed the normal distribution of the size-frequency data herein using the Shapiro–
Wilk test and the QQ plot. Population heterogeneity in size structure is attributed to
human-induced environmental degradation, where a decrease in population size over the
past 50 was a marked feature in the Chinese plateau lakes [89]. Strongly right-skewed
histograms generally indicate higher rates of juvenile mortality [96]. Manzlala Lake is
classified as mesotrophic to eutrophic, with higher organic matter and nutrient enrichment
due to agricultural discharge into the lagoon [97,98], which indicates that competition
for nutrients is not a main factor. Therefore, we have attributed the decrease in size and
morphologic breadth in the life population to the pollution by heavy metals.

5. Conclusions

The morphological breadth decreased significantly in the life populations of the study
area compared to the death assemblages, and both have significant shape differences. Life
populations in the area studied have smaller and more globular shells with smaller aper-
tures, which are well-known morphological adaptations for reducing shell maintenance
costs in polluted water. No distinct morphological variations were found among the death
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populations from different habitats, suggesting that habitats have played no significant
role in the phenotypic variations. As pollution in the lagoon water is the main difference
between life and death populations, the phenotypic differentiation was attributed to pollu-
tion, i.e., a pollution-induced evolution. The morphologic variation between life and death
populations can be attributed to time, but time only cannot comment on the marked varia-
tions (e.g., the decrease in both morphologic breadth and shell size). Water pollution after
the construction of the AHD (1970) may accelerate the evolutionary process. As gastropod
shells are used mainly for protection against predators, these pollution-induced changes
in shell morphology will weaken their functions and may reduce gastropod survival and
fitness. The findings highlight the possible impact of marine pollution in the evolution
process and contribute to our understanding of how natural selection mechanisms work in
real-world conditions.
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