22 research outputs found

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    The organelle of differentiation in embryos: the cell state splitter

    Full text link

    A prelude to neurogenesis

    No full text
    Abstract All neurons and macroglial cells of vertebrates derive from the neuroepithelium. Neuroepithelial (NE) cells first proliferate and, after closure of the neural tube, some cells start generating neurons. It is still unclear what triggers differentiation but apparently there is interplay between extrinsic (secreted or transmembrane signals) and intrinsic factors. Diriving from the embryonic ectoderm, the NE cells inherit epithelial characteristics. It has been shown in other developmental systems that epithelial determinants, such as cell-cell contacts and contact to basal laminar components can guide differentiation. The key epithelial features include cell polarity, and tight junctions. We studied these in the NE at two developmental stages, the neural plate, a proliferative stage and the neural tube, a differentiative stage. The polarity of membrane proteins in NE cells was studied with polarly budding viruses. Mouse embryos were infected with Fowl plague- and vesicular stomatitis viruses and cultured in a whole embryo culture system. Viral envelope proteins (HA and G-protein) were localized by indirect immunofluorescence and immunoelectron microscopy. HA was polarized in the plate stage neuroepithelial cells, whereas in the tube it was not polarized anymore. It is also shown by penetrance of apically injected horseradish peroxidase that in the neural plate, NE cells have functional tight junctions. At this stage, they also express occludin, a transmembrane protein of tight junctions, as shown by indirect immunofluorescence. In the neural tube, the paracellular barrier is lost and there is no occludin expression. In contrast, expression of ZO-1, a cytoplasmic protein binding to occiudin, is upregulated. The downregulation of these epithelial features occurs in all NE cells, irrespective of their mode of division and before any neurons are generated in the NE. The change is initiated already at the plate stage and coincides with the switch from E- to N-cadherin. Later, with birth of neurons, the proliferative cell layer also looses contact to basal lamina. This is probably an important step in the regulation of neurogenesis. Furthermore, lack of apico-basolateral polarity of non-anchored membrane proteins may contribute to the mechanism of rapid neuron generation. Until now, it has been impossible to distinguish a neuroepithelial cell preparing for neuron generation from the surrounding cells that give rise to two precursor cells. In this study, the immediate neuron precursors are shown to express the antiproliferative gene TIS2 1. Using this new marker and ISH in serial sections, we show that the switch to differentiation is initiated in single NE cells

    The Nf2 tumor suppressor regulates cell–cell adhesion during tissue fusion

    No full text
    Tissue fusion, the morphogenic process by which epithelial sheets are drawn together and sealed, has been extensively studied in Drosophila. However, there are unique features of mammalian tissue fusion that remain poorly understood. Notably, detachment and apoptosis occur at the leading front in mammals but not in invertebrates. We found that in the mouse embryo, expression of the Nf2 tumor suppressor, merlin, is dynamically regulated during tissue fusion: Nf2 expression is low at the leading front before fusion and high across the fused tissue bridge. Mosaic Nf2 mutants exhibit a global defect in tissue fusion characterized by ectopic detachment and increased detachment-induced apoptosis (anoikis). By contrast with core components of the junctional complex, we find that merlin is required specifically for the assembly but not the maintenance of the junctional complex. Our work reveals that regulation of Nf2 expression is a previously unrecognized means of controlling adhesion at the leading front, thereby ensuring successful tissue fusion

    Asymmetric cell division of stem and progenitor cells during homeostasis and cancer

    Get PDF

    Nedd1 expression as a marker of dynamic centrosomal localization during mouse embryonic development

    No full text
    The original publication can be found at www.springerlink.comAs the primary microtubule-organizing centre of the mammalian cell, the centrosome plays many important roles during cell growth and organization. This is evident across a broad range of cell types and processes, such as the proliferation, differentiation and polarity of neural cells. Additionally, given its localization and function, there are likely to be many more processes that rely on the centrosome that have not yet been characterized. Currently, little is known about centrosomal dynamics during mammalian development. In this study, we have analyzed Nedd1 protein expression to characterize the localization of the centrosome during some aspects of mouse embryogenesis. Using a Nedd1 antibody we have demonstrated the colocalization of Nedd1 with centrosomal markers. We found strong expression of Nedd1, and therefore the centrosome, in highly proliferating cells during neural development. Additionally, Nedd1 was found to have high expression in the cytoplasm of a subset of cells in the dorsal root ganglia. We have also shown a distinct, polarized centrosomal localization of Nedd1 in the developing lens, retina and other polarized tissues. This study reveals the localization of Nedd1 and the centrosome during important processes in mouse embryogenesis and provides a basis for further study into its role in development.Jantina A. Manning, Paul A. Colussi, Simon A. Koblar and Sharad Kuma
    corecore