54 research outputs found

    Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia

    No full text
    International audienceUnderstanding the subduction processes along the Sunda Trench requires detailed constraints on the subducting lithosphere. We build a detailed tectonic map of the Wharton Basin based on reinterpretation of satellite-derived gravity anomalies and marine magnetic anomalies. The Wharton Basin is characterized by a fossil ridge, dated ~36.5 Ma, offset by N-S fracture zones. Magnetic anomalies 18 to 34 (38–84 Ma) are identified on both flanks, although a large part of the basin has been subducted. We analyze the past plate kinematic evolution of the Wharton Basin by two-plate (India-Australia) and three-plate (India-Australia-Antarctica) reconstructions. Despite the diffuse plate boundaries within the Indo-Australian plate for the last 20 Ma, we obtain finite rotation parameters that we apply to reconstruct the subducted Wharton Basin and constrain the thickness, buoyancy, and rheology of the subducting plate. The lower subductability of younger lithosphere off Sumatra has important consequences on the morphology, with a shallower trench, forearc islands, and a significant inward deviation of the subduction system. This deviation decreases in the youngest area, where the Wharton fossil spreading center enters subduction: The discontinuous magmatic crust and serpentinized upper mantle, consequences of the slow spreading rates at which this area was formed, weaken the mechanical resistance to subduction and facilitate the restoration of the accretionary prism. Deeper effects include the possible creation of asthenospheric windows beneath the Andaman Sea, in relation to the long-offset fracture zones, and east of 105°E, as a result of subduction of the spreading center

    Modelling the thermal evolution of slow-spreading ridge segments and their off-axis geophysical signature

    Get PDF
    International audienceSystematic studies conducted between 15°N and 40°N over ridge segments along the slow-spreading Mid-Atlantic Ridge (MAR) have shown that segment characteristics are related to the thermal state of the segments and gradually vary with their length. This paper presents further developments of a 3-D model, based on the presence of a hot zone located under the segment centres (Gac et al. 2003), to (1) quantify the thermal structures and the geophysical signatures of segments of various lengths, considered as representative of the various MAR segments; (2) test if a simple and single model of thermal evolution can account for the characteristics of all segments and (3) explain the past evolution of the segmentation, as is observed off-axis along the MAR. The modelled thermal structure and three simulated geophysical outputs [crustal structure , along-axis variations of the earthquake maximum depth and the mantle Bouguer gravity anomalies (MBA)] are found to be directly controlled by the shape (geometry and dimensions) of the hot zone. A consistent fit between model outputs and along-axis variations of the geophysical observables over the various segments is obtained by varying solely the length of the hot zone. This result shows that segments of different length may in fact constitute the different stages of a single evolution process: the axial geophysical characteristics of the segment would progressively evolve from those of shorter segments to those of longer ones, as the hot zone lengthens along-axis. A subsequent shortening of the segment would result from a simultaneous shortening of the hot zone, segment characteristics reverting back from those of longer segments to those of shorter ones. Three geophysical fields (topography, gravity and magnetic anomalies) are simulated as the results of the thermal evolution of aligned and offset segments the length of which evolves through time. These simulations succeed in fitting observations for the entire range of observed axis offsets between adjacent MAR segments. The segment evolution produces peculiar off-axis isostatic topography and gravity anomaly (MBA), the rhomb-shaped patterns. Our simulations, which model adjacent offset segments having evolved through several cycles of lengthening and shortening, yield a good fit to the isostatic topography and MBA patterns observed in the off-axis region. Finally, the distribution of magnetization depends on the magnetic properties of each type of rocks and on the petrological structure of the lithosphere, which, in turn, results from its thermal structure and evolution. Modelled magnetic anomalies are shown to be in good agreement with off-axis observations along the N21°40' segment (TAMMAR) of the MAR

    Building the second version of the World Digital Magnetic Anomaly Map (WDMAM)

    Get PDF
    International audienceThe World Digital Anomaly Map (WDMAM) is a worldwide compilation of near-surface magnetic data. We present here a candidate for the second version of the WDMAM and its characteristics. This candidate has been evaluated by a group of independent reviewers and has been adopted as the official second version of the WDMAM during the 26th general assembly of the International Union of Geodesy and Geomagnetism (IUGG). The way this compilation has been built is described with some details. A global magnetic field model of the lithosphere contribution, parameterised by spherical harmonics, has been derived up to degree and order 800. The model information content has been evaluated by computing local spectra. Further, the compatibility of the anomaly field displayed by the WDMAM with a pure induced magnetisation is tested by comparison with the main field strength. These studies allowed an analysis of the compilation in terms of strength and wavelength content. They confirm the extremely smooth and weak contribution of the magnetic field generated in the lithosphere over Western Europe. This apparent weakness possibly extends to the Northern African continent. However, a global analysis remains difficult to achieve given the sparseness of good quality data over very large area of oceans and continents. The WDMAM and related information can be downloaded at http://www.wdmam.org/

    Extremely thin crust in the Indian Ocean possibly resulting from Plume–Ridge Interaction

    No full text
    International audienceThe thickness of the crust created at ocean spreading centres depends on the spreading rate and melt production in the mantle. It is ~5–8 km for a crust formed at slow and fast spreading centres and 2–4 km at ultra-slow spreading centres away from hotspots and mantle anomalies. The crust is generally thin at the fracture zones and thick beneath hotspots and large igneous provinces. Here we present results for the crust generated at the fast Wharton spreading centre 55–58 Ma ago using seismic reflection and refraction data. We find that the crust over a 200 km segment of the Wharton Basin is only 3.5–4.5 km thick, the thinnest crust ever observed in a fast spreading environment. A thin crust could be produced by the presence of depleted and/or cold mantle. Numerical simulations and recent laboratory experiments studying the impact of a hot plume under a lithosphere show that a curtain of weak cold downwellings of depleted mantle material is likely to develop around the edges of the hot plume pond. Because of a strongly temperature-dependent viscosity of lithospheric material, the hotter, therefore less viscous, bottom of the lithosphere can be mobilized by an impinging plume. If sampled by a spreading centre, the locally cold and depleted mantle should result in low production of melt. We suggest that the observed thin crust in the Wharton Basin is likely to have been formed by the interaction between the Kerguelen mantle plume and the Wharton spreading centre ~55 Ma ago

    Axial magnetic anomalies over slow-spreading ridge segments: insights from numerical 3-D thermal and physical modelling

    Get PDF
    International audienceThe axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The 'best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations

    A volcaniclastic deep-sea fan off La RĂ©union Island (Indian Ocean): Gradualism versus catastrophism

    No full text
    International audienceA new geophysical data set off La RĂ©union Island (western Indian Ocean) reveals a large volcaniclastic submarine fan developing in an open-ocean setting. The fan is connected to a torrential river that floods during tropical cyclones. Sediment storage at the coast is limited, suggesting that the sediments are carried directly to the basin. The fan morphology and turbidites in cores lead us to classify it as a sand-rich system mainly fed by hyperpycnal flows. In the ancient geological record, there are many examples of thick volcaniclastic successions, but studies of modern analogues have emphasized mechanisms such as debris avalanches or direct pyroclastic flow into the sea. Because the Cilaos deep-sea fan is isolated from any continental source, it provides information on architecture and noncatastrophic processes in a volcaniclastic deep-sea fan

    A geomagnetic record over the last 3.5 million years from deep-tow magnetic anomaly profiles across the Central Indian Ridge

    No full text
    International audienceHigh-resolution records of the geomagnetic field intensity over the last 4 Myr provided by paleomagnetic analyses of marine sediments have shown the occurrence of short-lived low field intensity features associated with excursions or short polarity intervals. In order to evaluate the ability of marine magnetic anomalies to record the same geomagnetic events, we have collected six deep-tow (-500 m above the seafloor) and several sea surface magnetic anomaly profiles from the Central Indian Ridge across the Brunhes, Matuyama, and Gauss chrons (i.e., from the ridge axis to anomaly 2A). After removal of topography, latitude, and azimuth effects, we converted distances into time sequences using well-dated polarity reversal anomalies as tie points. We calculated the average signal to test the robustness of the short-wavelength anomalies. The resulting stacked profile is very similar to stacked sea surface and downward continued profiles from the Central Indian Ridge, the East Pacific Rise, and the Pacific-Antarctic Ridge. Our results suggest that in addition to polarity reversals, to previously suggested geomagnetic events (subchrons or excursions) within the Brunhes and Matuyama chrons. A new small-scale magnetic anomaly, likely generated by several closely spaced geomagnetic field intensity variations represent the major contributor to the detailed shape of recent marine magnetic anomalies in investigated areas. We observe a dense succession of microanomalies that are correlated excursions (Ontong Java 1 and 2, and Gilsa), is found after the Olduvai chron. The near-bottom results support the existence of three geo-magnetic features between the Gauss-Matuyama boundary and Olduvai. They also suggest three geomagnetic events during the C2A. I n subchron within the Gauss chron. This study emphasizes the potential of deep-tow magnetic surveys in detecting fluctuations in geo-magnetic field intensity and, in particular, short-lived excursions, a poorly constrained part of the geomagnetic field temporal variation spectrum

    Detachment tectonics at Mid-Atlantic Ridge 26°N

    Get PDF
    Spreading processes associated with slow-spreading ridges are a complex interplay of volcanic accretion and tectonic dismemberment of the oceanic crust, resulting in an irregular seafloor morphology made up of blocks created by episodes of intense volcanic activity or tectonic deformation. These blocks undergo highly variable evolution, such as tilts or dissection by renewed tectonic extension, depending on their positions with respect to the spreading axis, core complexes, detachment or transform faults. Here, we use near-seafloor magnetic and bathymetric data and seismic profiles collected over the TAG Segment of the Mid-Atlantic Ridge to constrain the tectonic evolution of these blocks. Our study reveals that the presence and evolution of oceanic core complexes play a key role in triggering block movements. The deep subvertical detachment fault roots on the plate boundary, marked by a thermal anomaly and transient magma bodies. Thermal and magmatic variations control the structure and morphology of the seafloor above the subhorizontal detachment surface, occasionally leading to relocating the detachment

    Making a Better Magnetic Map

    Get PDF
    A new version of the World Digital Magnetic Anomaly Map, released last summer, gives greater insight into the structure and history of Earth's crust and upper mantle.Published1A. Geomagnetismo e PaleomagnetismoN/A or not JC

    Magnetic structure of a slow spreading ridge segment: Insights from near-bottom magnetic measurements on board a submersible

    Get PDF
    International audienceNear-bottom magnetic measurements on board submersible Nautile were carried out on the Mid-Atlantic Ridge 21 degrees 40'N segment, and deep-sea geomagnetic vector anomalies along 19 dive tracks were obtained by applying the processing method for shipboard three-component magnetometer data. A forward modeling technique using short-wavelength components of the anomalies arising from local topography and vertical motion of the submersible was designed to estimate the absolute magnetization intensity of the seafloor. In the vicinity of the spreading axis a considerable number of magnetization estimations are reliably confirmed by the high correlation between observed and modeled anomalies, whereas less reliable estimations are obtained off-axis, probably because the sediment buries the basement topography. The natural remanent magnetization (NRM) measured on basalt samples collected during these dives is compared with the magnetization from anomalies. Though both results give a similar range of magnetization intensity, no correlation is confirmed between them, possibly because the magnetization from anomalies represents laterally averaged seafloor magnetization, whereas the NRM has variations at the scale of individual pillow or lava pile. Equivalent magnetization inverted from the sea-surface magnetic anomalies shows axial magnetization increases significantly from the segment center to the segment ends. However, the results of eight dives conducted near the spreading axis at different locations along the segment show much less variation in magnetization intensity along the axis. We ascribe the high equivalent magnetization at segment ends to preferential serpentinization of peridotite near the segment ends and the associated formation of magnetite. The results of three across-axis transects composed of 15 dives running in the spreading direction can be consistently interpreted as recording geomagnetic paleointensity variations during the Brunhes epoch. Although magnetization lows are generally correspondent to periods of low paleointensity, they show deeper drop than predicted from the paleointensity variation
    • …
    corecore