13 research outputs found

    Haloquadratum walsbyi : Limited Diversity in a Global Pond

    Get PDF
    BACKGROUND: Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared. PRINCIPAL FINDINGS: Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4-20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23(T) but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23(T) carries two ∼6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea. CONCLUSIONS: Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species

    Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds

    Get PDF
    Haloquadratum walsbyi is frequently a dominant member of the microbial communities in hypersaline waters. 16S rRNA gene sequences indicate that divergence within this species is very low but relatively few sites have been examined, particularly in the southern hemisphere. The diversity of Haloquadratum was examined in three coastal, but geographically distant saltern crystallizer ponds in Australia, using both culture-independent and culture-dependent methods. Two 97%-OTU, comprising Haloquadratum- and Halorubrum-related sequences, were shared by all three sites, with the former OTU representing about 40% of the sequences recovered at each site. Sequences 99.5% identical to that of Hqr. walsbyi C23T were present at all three sites and, overall, 98% of the Haloquadratum-related sequences displayed ≤2% divergence from that of the type strain. While haloarchaeal diversity at each site was relatively low (9–16 OTUs), seven phylogroups (clones and/or isolates) and 4 different clones showed ≤90% sequence identity to classified taxa, and appear to represent novel genera. Six of these branched together in phylogenetic tree reconstructions, forming a clade (MSP8-clade) whose members were only distantly related to classified taxa. Such sequences have only rarely been previously detected but were found at all three Australian crystallizers

    The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes

    Get PDF
    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions

    The Isolation of Viruses Infecting Archaea

    Get PDF
    A mere 50 viruses of Archaea have been reported to date; these have been investigated mostly by adapting methods used to isolate bacteriophages to the unique growth conditions of their archaeal hosts. The most numerous are viruses of thermophilic Archaea. These viruses have been discovered by screening enrichment cultures and novel isolates from environmental samples for their ability to form halos of growth inhibition, or by using electron microscopy to screen enrichment cultures for virus-like particles. Direct isolation without enrichment has not yet been successful for viruses of extreme thermophiles. On the other hand, most viruses of extreme halophiles, the second most numerous archaeal viruses, have been isolated directly from hypersaline environments. Detailed methods for the isolation of viruses of extremely thermoacidophilic Archaea and extremely halophilic Archaea are presented in this manuscript. These methods have been extremely effective in isolating novel viruses. However, Archaea comprise much more than extreme thermoacidophiles and extreme halophiles. Therefore a vast pool of archaeal viruses remain to be discovered, isolated, and characterized, particularly among the methanogens and marine Archaea. Some suggestions for expansion of the described methods are discussed. We hope these suggestions will provide an impetus for future work on these and other Archaeal viruses

    Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: Update of Taxonomy Changes in 2021

    Get PDF
    In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) – summarise the results of our activities for the period March 2020 – March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratifed by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefned (moved/promoted)

    SH1: A novel, spherical halovirus isolated from an Australian hypersaline lake

    Get PDF
    AbstractA novel halovirus, SH1, with a spherical morphology is described. Isolated from a hypersaline lake, SH1 is divalent, producing clear plaques on Haloarcula hispanica and a natural Halorubrum isolate. Single-step growth curves gave a latent period of 5–6 h and a burst size of around 200 PFU/cell. The host can differentiate to form tight clusters of thick cell-walled forms, and these were shown to be resistant to infection. Purified virions had no visible tail, were about 70 nm in diameter, and displayed a fragile outer capsid layer, possibly with an underlying membrane component. The structural proteins of the virion were analyzed by SDS–PAGE and several were found to be cross-linked, forming protein complexes. The genome was linear, dsDNA, of approximately 30 kb in length. This morphology and linear genome are features not observed in any other euryarchaeal viruses, but have properties similar to the bacterial virus PRD1

    Variable impact of rice (<i>Oryza sativa</i>) on soil metal reduction and availability of pore water Fe<sup>2+</sup> and Mn<sup>2+</sup> throughout the growth period

    No full text
    <p>Flooding of wetland or agricultural soils can result in substantial alteration of the pore water trace metal profiles and potentially also influence the bioavailability of other trace elements adsorbed to the insoluble oxides. Experimental microcosms were used to quantify the impact of rice (<i>Oryza sativa</i>) plants across an entire growing cycle on the concentrations of Mn<sup>2+</sup> and Fe<sup>2+</sup> in two soil types (red sodosol and grey vertosol). Two water management treatments were included: a standard flooded treatment and a saturated treatment (−3 kPa). Soil pore water profiles were established from samples collected at four sampling depths (2.5, 7.5, 15 and 25 cm) on 50 occasions. Fe<sup>2+</sup> and Mn<sup>2+</sup> concentrations were higher in flooded soil than in saturated soil and greatest at a depth of 7.5 cm. The presence of rice plants increased Mn<sup>2+</sup> concentrations in flooded soils, but tended to decrease Mn<sup>2+</sup> concentrations in saturated soils. The influence of rice plants on Fe<sup>2+</sup> concentrations was greatest at a depth of 7.5 cm. Changes in soil pore water Fe<sup>2+</sup> and Mn<sup>2+</sup> concentrations due to the presence of rice plants were correlated with flowering and reproduction.</p
    corecore