561 research outputs found

    A method to polarise antiprotons in storage rings and create polarised antineutrons

    Full text link
    An intense circularely polarised photon beam interacts with a cooled antiproton beam in a storage ring. Due to spin dependent absorption cross sections for the reaction gamma+antiproton > pi- + antineutron a built-up of polarisation of the stored antiprotons takes place. Figures-of-merit around 0.1 can be reached in principle over a wide range of antiproton energies. In this process antineutrons with Polarisation > 70% emerge. The method is presented for the case of 300 MeV/c cooled antiproton beam

    Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings

    Get PDF
    Throughout the last decades, magnetic nanoparticles (MNP) have gained tremendous interest in different fields of applications like biomedicine (e.g., magnetic resonance imaging (MRI), drug delivery, hyperthermia), but also more technical applications (e.g., catalysis, waste water treatment) have been pursued. Different surfactants and polymers are extensively used for surface coating of MNP to passivate the surface and avoid or decrease agglomeration, decrease or modulate biomolecule absorption, and in most cases increase dispersion stability. For this purpose, electrostatic or steric repulsion can be exploited and, in that regard, surface charge is the most important (hybrid) particle property. Therefore, polyelectrolytes are of great interest for nanoparticle coating, as they are able to stabilize the particles in dispersion by electrostatic repulsion due to their high charge densities. In this review article, we focus on polyzwitterions as a subclass of polyelectrolytes and their use as coating materials for MNP. In the context of biomedical applications, polyzwitterions are widely used as they exhibit antifouling properties and thus can lead to minimized protein adsorption and also long circulation times

    Influence of sterilization and preservation procedures on the integrity of serum protein-coated magnetic nanoparticles

    Get PDF
    Protein-coated magnetic nanoparticles are promising candidates for various medical applications. Prior to their application into a biological system, one has to guarantee that the particle dispersions are free from pathogens or any other microbiologic contamination. Furthermore, to find entrance into clinical routine, the nanoparticle dispersions have to be storable for several months. In this study, we tested several procedures for sterilization and preservation of nanoparticle containing liquids on their influence on the integrity of the protein coating on the surface of these particles. For this, samples were treated by freezing, autoclaving, lyophilization, and ultraviolet (UV) irradiation, and characterized by means of dynamic light scattering, determination of surface potential, and gel electrophoresis afterwards. We found that the UV sterilization followed by lyophilization under the addition of polyethylene glycol are the most promising procedures for the preparation of sterilized long-term durable protein-coated magnetic nanoparticles. Ongoing work is focused on the optimization of used protocols for UV sterilization and lyophilization for further improvement of the storage time

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure
    • …
    corecore