108 research outputs found
Fabrication of cooled, graphite-lined structures
Improved method of fabricating cooled graphite-lined thrust chamber has been developed. Layer of nickel is electrodeposited onto outer surface of machined and contoured graphite liner. Coolant passages are machined into nickel layer, filled with wax, outer shell electroformed over this, and wax removed. Tests in flox/methane rocket engine were completely successful
LOFAR Sparse Image Reconstruction
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital
phased array interferometer with multiple antennas distributed in Europe. It
provides discrete sets of Fourier components of the sky brightness. Recovering
the original brightness distribution with aperture synthesis forms an inverse
problem that can be solved by various deconvolution and minimization methods
Aims. Recent papers have established a clear link between the discrete nature
of radio interferometry measurement and the "compressed sensing" (CS) theory,
which supports sparse reconstruction methods to form an image from the measured
visibilities. Empowered by proximal theory, CS offers a sound framework for
efficient global minimization and sparse data representation using fast
algorithms. Combined with instrumental direction-dependent effects (DDE) in the
scope of a real instrument, we developed and validated a new method based on
this framework Methods. We implemented a sparse reconstruction method in the
standard LOFAR imaging tool and compared the photometric and resolution
performance of this new imager with that of CLEAN-based methods (CLEAN and
MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse
reconstruction performs as well as CLEAN in recovering the flux of point
sources; ii) performs much better on extended objects (the root mean square
error is reduced by a factor of up to 10); and iii) provides a solution with an
effective angular resolution 2-3 times better than the CLEAN images.
Conclusions. Sparse recovery gives a correct photometry on high dynamic and
wide-field images and improved realistic structures of extended sources (of
simulated and real LOFAR datasets). This sparse reconstruction method is
compatible with modern interferometric imagers that handle DDE corrections (A-
and W-projections) required for current and future instruments such as LOFAR
and SKAComment: Published in A&A, 19 pages, 9 figure
Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin
Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
Context. Observing Jupiter's synchrotron emission from the Earth remains
today the sole method to scrutinize the distribution and dynamical behavior of
the ultra energetic electrons magnetically trapped around the planet (because
in-situ particle data are limited in the inner magnetosphere). Aims. We perform
the first resolved and low-frequency imaging of the synchrotron emission with
LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV)
which map a broad region of Jupiter's inner magnetosphere. Methods (see article
for complete abstract) Results. The first resolved images of Jupiter's
radiation belts at 127-172 MHz are obtained along with total integrated flux
densities. They are compared with previous observations at higher frequencies
and show a larger extent of the synchrotron emission source (>=4 ). The
asymmetry and the dynamic of east-west emission peaks are measured and the
presence of a hot spot at lambda_III=230 {\deg} 25 {\deg}. Spectral flux
density measurements are on the low side of previous (unresolved) ones,
suggesting a low-frequency turnover and/or time variations of the emission
spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The
observations at 127 MHz depict an extended emission up to ~4-5 planetary radii.
The similarities with high frequency results reinforce the conclusion that: i)
the magnetic field morphology primarily shapes the brightness distribution of
the emission and ii) the radiating electrons are likely radially and
latitudinally distributed inside about 2 . Nonetheless, the larger extent
of the brightness combined with the overall lower flux density, yields new
information on Jupiter's electron distribution, that may shed light on the
origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) -
abstract edited because of limited character
Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz
We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 z >12) and the Epoch of Reionization (12 > z>5)
The brightness and spatial distributions of terrestrial radio sources
Faint undetected sources of radio-frequency interference (RFI) might become visible in long radio observations when they are consistently present over time. Thereby, they might obstruct the detection of the weak astronomical signals of interest. This iss
LOFAR detections of low-frequency radio recombination lines towards Cassiopeia A
Cassiopeia A was observed using the low-band antennas of the LOw Frequency ARray (LOFAR) with high spectral resolution. This allowed a search for radio recombination lines (RRLs) along the line-of-sight to this source. Five carbon {} RRLs were detected in absorption between 40 and 50 MHz with a signal-to-noise ratio of {gt}5 from two independent LOFAR data sets. The derived line velocities (v ~{} - 50 km s) and integrated optical depths (~{}13 s) of the RRLs in our spectra, extracted over the whole supernova remnant, are consistent within each LOFAR data set and with those previously reported. For the first time, we are able to extract spectra against the brightest hotspot of the remnant at frequencies below 330 MHz. These spectra show significantly higher (15-80 percent) integrated optical depths, indicating that there is small-scale angular structure of the order of ~{}1 pc in the absorbing gas distribution over the face of the remnant. We also place an upper limit of 3 { imes} 10 on the peak optical depths of hydrogen and helium RRLs. These results demonstrate that LOFAR has the desired spectral stability and sensitivity to study faint recombination lines in the decameter band
Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies
Context. The four persistent radio sources in the northern sky with the highest flux density at metre wavelengths are Cassiopeia A, Cygnus A, Taurus A, and Virgo A; collectively they are called the A-team. Their flux densities at ultra-low frequencies (< 100 MHz) can reach several thousands of janskys, and they often contaminate observations of the low-frequency sky by interfering with image processing. Furthermore, these sources are foreground objects for all-sky observations hampering the study of faint signals, such as the cosmological 21 cm line from the epoch of reionisation. Aims. We aim to produce robust models for the surface brightness emission as a function of frequency for the A-team sources at ultra-low frequencies. These models are needed for the calibration and imaging of wide-area surveys of the sky with low-frequency interferometers. This requires obtaining images at an angular resolution better than 15\u2033 with a high dynamic range and good image fidelity. Methods. We observed the A-team with the Low Frequency Array (LOFAR) at frequencies between 30 MHz and 77 MHz using the Low Band Antenna system. We reduced the datasets and obtained an image for each A-team source. Results. The paper presents the best models to date for the sources Cassiopeia A, Cygnus A, Taurus A, and Virgo A between 30 MHz and 77 MHz. We were able to obtain the aimed resolution and dynamic range in all cases. Owing to its compactness and complexity, observations with the long baselines of the International LOFAR Telescope will be required to improve the source model for Cygnus A further
Probing atmospheric electric fields in thunderstorms through radio emission from cosmic-ray-induced air showers
We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields
LOFAR discovery of a quiet emission mode in PSR B0823+26
15 pages, 8 figures, 2 tables, accepted for publication in MNRASInternational audiencePSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over timescales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR discovery that PSR B0823+26 has a weak and sporadically emitting 'quiet' (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting 'bright' (B) mode. Previously, the pulsar has been undetected in the Q-mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B-mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q-mode and B-mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed
- …