84 research outputs found

    Circulation, transport and bottom boundary layers of the deep currents in the Brazil Basin

    Get PDF
    Zonal and meridional hydrographic sections obtained for the South Atlantic Ventilation Experiment are used to study the circulation patterns and estimate the transports of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) in the Brazil Basin. The NADW Deep Western Boundary Current (DWBC) appears to be a relatively large (≈ 800 km wide by 2 km thick), double core current, separated by counterflowing recirculation. It appears to split, branching seaward at the Cape SaĂ” Roque near 5S and again at the Columbia-Trinidad Seamount Chain at 21S. As a result of this latter bifurcation, the NADW DWBC flow in the southern basin decreases significantly. In the southern part of the basin, the AABW DWBC is a relatively broad (≈ 1000 km), thin (≈ 700 m) flow which hugs the bottom of the continental rise. The densest waters that compose the core of the AABW DWBC eventually separate from the DWBC in the northern part of basin as they are topographically diverted to the east. The southward return flow at the eastern edge of the AABW DWBC and a northward flow in the eastern part of the basin suggest a meandering meridional recirculation of AABW in the interior of the basin. In the north central part of the deep basin there is a cyclonic abyssal gyre with a large component of Weddell Sea Deep Water (WSDW). The along-isobath movement of the DWBCs over the sloping bottom drives cross-slope advection of the bottom boundary layer. The up-slope advection of denser water within the NADW DWBC is believed to set up a slippery bottom layer, while the bottom layer associated with the down-slope advection of lighter water within the AABW DWBC is estimated to be only partially slippery. Geostrophic transports of heat, salt and mass are used to estimate mixing in the AABW flow in the Brazil Basin. The rates at which heat and salt mix are characteristic of diapycnal turbulent mixing. The mixing processes appear to be more active along the western boundary

    Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    Get PDF
    Accepted manuscript version. Published version available at https://doi.org/10.1016/j.csr.2008.02.002. Licensed CC BY-NC-ND 4.0.Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998–April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×106 t y−1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×109 t y−1). However the net resuspension (erosion/deposition budget) for trawling (0.4×106 t y−1) was only one order of magnitude lower than that for waves and currents (9.2×106 t y−1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4×106 t y−1) was one order of magnitude lower than export associated with natural resuspension (8.5×106 t y−1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.</p

    Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic condtions and meiofaunal biodiversity

    Get PDF
    Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cas- cading (DSWC), which quickly modifies physical and chem- ical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea) report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To in- vestigate the effects of these episodic events, we analysed changes in the meiofaunal biodiversity inside and outside the canyon. Sediment samples were collected at depths varying from ca. 1000 to >2100m in May 2004 (before a major event), April 2005 (during a major cascading event) and in October 2005, August 2006, April 2008 and April 2009 (af- ter a major event). We report here that the late winter–early spring 2005 cascading led to a reduction of the organic mat- ter contents in canyon floor sediments down to 1800 m depth, whereas surface sediments at about 2200 m depth showed an increase. Our findings suggest that the nutritional material re- moved from the shallower continental shelf, canyon floor and flanks, and also the adjacent open slope was rapidly trans- ported to the deep margin. During the cascading event the meiofaunal abundance and biodiversity in the studied deep- sea sediments were significantly lower than after the event. Benthic assemblages during the cascading were significantly different from those in all other sampling periods in both the canyon and deep margin. After only six months from the cessation of the cascading, benthic assemblages in the impacted sediments were again similar to those observed in other sampling periods, thus illustrating a quick recovery. Since the present climate change is expected to increase the intensity and frequency of these episodic events, we anticipate that they will increasingly affect benthic bathyal ecosys- tems, which may eventually challenge their resilience

    Benthic foraminiferal assemblages in the Cap de Creus canyon and adjacent open slope: Potential influence of dense shelf water cascading and open-ocean convection

    Get PDF
    The NW Mediterranean Sea is subjected to episodically intense events of dense shelf water cascading (DSWC) and open-ocean convection (OOC) that ventilate the seafloor and also have important consequences on organic matter inputs to the seabed and sediment dynamics. The influence of the massive physico-chemical disturbance driven by these events on deep-sea ecosystems is poorly known, and, to date, no information is available on the response of benthic foraminiferal assemblages. To provide insights on these gaps of knowledge, in April 2009 we investigated the foraminiferal faunas along the major axis of the Cap de Creus canyon (at 1000, 1900 and 2400 m depth) and at two additional stations located on the adjacent open slope (at 1000 and 1900 m). The area under scrutiny was hit by intense DSWC and OOC events in winters 2005 and 2006, and during winter 2009 an intense OOC event occurred, with detectable consequences observed at &gt; 1500 m depth. We report here foraminiferal faunas characterized by low densities but relatively high levels of biodiversity at 1000-m depth stations. On the contrary, at the deeper depths, very high densities (associated with low organic matter contents) and strong dominance of the disaster species Usbekistania charoides were observed in the &gt; 63 ”m fraction. The comparison of our results – obtained immediately after an OOC event – to those previously described in spring 2004, before DSWC and OOC events, reveals the presence of largely different foraminiferal assemblages in the two periods. Based on a detailed analysis of the ecological traits of the faunas encountered in the two sampling periods, we suggest that either DSWC or OOC can have a role in shaping deep-sea foraminiferal faunas. Moreover, we contend that, at 1000 m depth, the composition of the foraminiferal assemblages in spring 2009 is suggestive of a resilient stage following the major DSWC events in 2005/2006, whereas the low evenness of faunas at ≄ 1900 m depth is, most likely, the result of the OOC event that occurred in winter 2009, a few months before our sampling

    Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages

    Get PDF
    Piñeiro, S., GonzĂĄlez-Pola, C., FernĂĄndez-DĂ­az, J. M., Naveira-Garabato, A. C., SĂĄnchez-Leal, R., Puig, P., et al. (2021). Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages. Journal of Geophysical Research: Oceans, 126, e2020JC016535. https://doi.org/10.1029/2020JC016535. © 2020. American Geophysical Union. All Rights Reserved.© 2020. American Geophysical Union. All Rights Reserved. Major deep-convection activity in the northwestern Mediterranean during winter 2005 triggered the formation of a complex anomalous deep-water structure that substantially modified the properties of the Western Mediterranean deep layers. Since then, evolution of this thermohaline structure, the so-called Western Mediterranean Transition (WMT), has been traced through a regularly sampled hydrographic deep station located on the outer continental slope of Minorca Island. A rapid erosion of the WMT's near-bottom thermohaline signal was observed during 2005–2007. The plausible interpretation of this as local bottom-intensified mixing motivates this study. Here, the evolution of the WMT structure through 2005–2007 is reproduced by means of a one-dimensional diffusion model including double-diffusive mixing that allows vertical variation of the background mixing coefficient and includes a source term to represent the lateral advection of deep-water injections from the convection area. Using an optimization algorithm, a best guess for the depth-dependent background mixing coefficient is obtained for the study period. WMT evolution during its initial stages is satisfactorily reproduced using this simple conceptual model, indicating that strong depth-intensified mixing (K ∞ (z) ≈ 22 × 10−4 m2 s−1; z âȘ† 1,400 dbar) is a valid explanation for the observations. Extensive hydrographic and current observations gathered over the continental slope of Minorca during winter 2018, the first deep-convective winter intensively sampled in the region, provide evidence of topographically localized enhanced mixing concurrent with newly formed dense waters flowing along-slope toward the Algerian sub-basin. This transport-related boundary mixing mechanism is suggested to be a plausible source of the water-mass transformations observed during the initial stages of the WMT off Minorca.CTM2014-54374-R. BES-2015-074316.VersiĂłn del editor3,17

    Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period

    Get PDF
    We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high‐frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier “vintage” of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10−3/yr) and potential temperature (3.2 ± 0.5 × 10−3 C/yr) observed from 2009 to 2013 for the 600–2300 m layer. For the first time, the overlapping of the three “phases” of deep convection can be observed, with secondary vertical mixing events (2–4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event

    Sediment transport along the Cap de Creus Canyon flank during a mild, wet winter

    Get PDF
    Cap de Creus Canyon (CCC) is known as a preferential conduit for particulate matter leaving the Gulf of Lion continental shelf towards the slope and the basin, particularly in winter when storms and dense shelf water cascading coalesce to enhance the seaward export of shelf waters. During the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) cruise in March 2011, deployments of recording instruments within the canyon and vertical profiling of the water column properties were conducted to study with high spatial-temporal resolution the impact of such processes on particulate matter fluxes. In the context of the mild and wet 2010–2011 winter, no remarkable dense shelf water formation was observed. On the other hand, the experimental setup allowed for the study of the impact of E-SE storms on the hydrographical structure and the particulate matter fluxes in the CCC. The most remarkable feature in terms of sediment transport was a period of dominant E-SE winds from 12 to 16 March, including two moderate storms (maximum significant wave heights = 4.1–4.6 m). During this period, a plume of freshened, relatively cold and turbid water flowed at high speeds along the southern flank of the CCC in an approximate depth range of 150–350 m. The density of this water mass was lighter than the ambient water in the canyon, indicating that it did not cascade off-shelf and that it merely downwelled into the canyon forced by the strong cyclonic circulation induced over the shelf during the storms and by the subsequent accumulation of seawater along the coast. Suspended sediment load in this turbid intrusion recorded along the southern canyon flank oscillated between 10 and 50 mg L−1, and maximum currents speeds reached values up to 90 cm s−1. A rough estimation of 105 tons of sediment was transported through the canyon along its southern wall during a 3-day-long period of storm-induced downwelling. Following the veering of the wind direction (from SE to NW) on 16 March, downwelling ceased, currents inside the canyon reversed from down- to up-canyon, and the turbid shelf plume was evacuated from the canyon, most probably flowing along the southern canyon flank and being entrained by the general SW circulation after leaving the canyon confinement. This study highlights that remarkable sediment transport occurs in the CCC, and particularly along its southern flank, even during mild and wet winters, in absence of cascading and under limited external forcing. The sediment transport associated with eastern storms like the ones described in this paper tends to enter the canyon by its downstream flank, partially affecting the canyon head region. Sediment transport during these events is not constrained near the seafloor but distributed in a depth range of 200–300 m above the bottom. Our paper broadens the understanding of the complex set of atmosphere-driven sediment transport processes acting in this highly dynamic area of the northwestern Mediterranean Sea

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies
    • 

    corecore