17 research outputs found

    Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping

    Get PDF
    During an environmental survey performed in autumn 2016, living (stained) benthic foraminiferal faunas were investigated at 16 stations sampled within the Cassidaigne Canyon (NW Mediterranean Sea) and surrounding area and located between 265–2500 m water depth. For many decades, industrial bauxite residues of red mud have drained into the canyon via a submarine pipe, causing physical disturbance and chemical contamination. In January 2016, solid waste disposal ceased and was replaced with the dumping of a low-density liquid effluent. Our ecological observations at the 725 m-depth station closest to the Cassidaigne Canyon submarine pipe show the highest concentration of the opportunistic species, and a strongly altered benthic diversity. At the other fifteen stations, foraminiferal standing stocks and simple diversity decrease with decreasing food input to the seafloor and increasing water depth. There, foraminiferal composition with a minor contribution of stress-tolerant species echoes the overall meso-oligotrophic patterns of a relatively stable ecosystem

    Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping

    Get PDF
    During an environmental survey performed in autumn 2016, living (stained) benthic foraminiferal faunas were investigated at 16 stations sampled within the Cassidaigne Canyon (NW Mediterranean Sea) and surrounding area and located between 265–2500 m water depth. For many decades, industrial bauxite residues of red mud have drained into the canyon via a submarine pipe, causing physical disturbance and chemical contamination. In January 2016, solid waste disposal ceased and was replaced with the dumping of a low-density liquid effluent. Our ecological observations at the 725 m-depth station closest to the Cassidaigne Canyon submarine pipe show the highest concentration of the opportunistic species, and a strongly altered benthic diversity. At the other fifteen stations, foraminiferal standing stocks and simple diversity decrease with decreasing food input to the seafloor and increasing water depth. There, foraminiferal composition with a minor contribution of stress-tolerant species echoes the overall meso-oligotrophic patterns of a relatively stable ecosystem

    Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tƍhoku-Oki tsunami

    Get PDF
    On March 11th, 2011 the Mw 9.0 2011 Tƍhoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.Peer reviewe

    Ecology of live benthic foraminifera from the Whittard Canyon (NE Atlantic)

    Get PDF
    Date du colloque : 05/2010International audienc

    Benthic foraminiferal response to sedimentary disturbance in the Capbreton canyon (Bay of Biscay, NE Atlantic)

    No full text
    Living (Rose Bengal stained) and dead benthic foraminifera were investigated at 6 deep-sea sites sampled in the Capbreton canyon area (Bay of Biscay, France). Three sites were located along the canyon axis at 301 m, 983 m and 1478 m and 3 stations were positioned on adjacent terraces at 251 m, 894 m and 1454 m. Sedimentary features indicate that frequent sedimentary disturbances of different magnitudes occur along the Capbreton canyon axis and adjacent terraces. Such environmental conditions cause the presence of very particular benthic environments. Along the 6 studied sites, different foraminiferal responses to various sedimentary patterns are observed revealing the complexity of this canyon environment. Some sites (Gitan 3 (canyon axis), Gitan 5 (canyon axis) and Gitan 6 (terrace)) are characterized by moderate to low standing stocks and low diversity and are mainly dominated by pioneer taxa such as Fursenkoina brady, Reophax dentaliniformis and Technitella melo suggesting a recent response to turbidite deposits recorded at these sites. Others sites (Gitan 1 and Gitan 2) show extremely high standing stocks and are mainly dominated by the opportunistic Bolivina subaenariensis and Bulimina marginata. Such faunal characteristics belonging to a more advanced stage of ecosystem colonization indicates strongly food-enriched sediment but extremely unstable conditions. Moderate standing stocks and diverse assemblage composed of species such as Uvigerina mediterranea and U. peregrina has only been observed at the terrace site Gitan 4. More stable sedimentary conditions recorded at this terrace seem to be suitable to the development of a dense and diverse foraminiferal community. Numerous neretic allochtonous species were observed in the dead foraminiferal fauna. These allochthonous species mainly originate from shelf areas (< 60 m)

    Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay

    Get PDF
    Special issue Submarine Canyons: Complex Deep-Sea Environments Unravelled by Multidisciplinary Research.-- 11 pages, 5 figures, 2 tablesThe Cap-Ferret Canyon (CFC), a major morphologic feature of the eastern margin of the Bay of Biscay, occupies a deep structural depression that opens about 60km southwest of the Gironde Estuary. Detailed depth profiles of the particle-reactive radionuclides 234Th and 210Pb in interface sediments were used to characterise the present sedimentation (bioturbation, sediment mass accumulation, and focusing) in the CFC region. Two bathymetric transects were sampled along the CFC axis and the southern adjacent margin. Particle fluxes were recorded from the nearby Landes Plateau by means of sediment traps in 2006 and 2007. This dataset provides a new and comprehensive view of particulate matter transfer in the Cap-Ferret Canyon region, through a direct comparison of the canyon with the adjacent southern margin. Radionuclide profiles (234Th and 210Pb) and mass fluxes demonstrate that significant particle dynamics occur on the SE Aquitanian margin in comparison with nearby margins. The results also suggest show three distinct areas in terms of sedimentary activity. In the upper canyon (2000m) can be considered inactive at annual or decadal scales. In contrast with the slow and continuous accumulation of relatively fresh material that characterises the middle canyon, the lower canyon receives pulses of sediment via gravity flows on longer time scales. At decadal scale, the CFC can be considered as a relatively quiescent canyon. The disconnection of the CFC from major sources of sediment delivery seems to limit its efficiency in particle transfer from coastal areas to the adjacent ocean basin. © 2013 Elsevier Ltd.Cruises were supported respectively by the ANR FORCLIM and EC2CO BIOMIN programs.The acquisition of the low-background gamma detector was funded in part by the CNRS (LEBE-CYBER), the Aquitain Research council and the University of Bordeaux. A3-year doctoral fellowship was provided to P.Duros by the Regional Council of Pays de la LoirePeer Reviewe
    corecore