631 research outputs found

    Internal friction investigation of phase transformation in nearly stoichiometric LaMnO3+δ

    Get PDF
    Rhombohedral LaMnO3+δ powders, prepared by two different soft chemistry routes (co-precipitation and hydrothermal synthesis), are sintered at 1400 °C for 2 h in air. Measurements of internal friction Q−1(T) and shear modulus G(T), at low frequencies from −180 to 700 °C under vacuum, evidence three structural transitions of nearly stoichiometric orthorhombic LaMnO3+δ. The first one, at 250 or 290 °C, depending on the processing followed, is associated to either a Jahn–Teller structural transition or a phase transformation from orthorhombic to pseudo-cubic. The second one at 610 or 630 °C is related to a phase transformation from pseudo-cubic or orthorhombic to rhombohedral. Below the Neel temperature, around −170 °C, a relaxation peak could be associated, for samples prepared according to both processing routes, to the motion of Weiss domains

    Effects of the nature of the doping salt and of the thermal pre-treatment and sintering temperature on spark plasma sintering of transparent alumina

    Get PDF
    A slurry of a-Al2O3 was doped with Mg, Zr and La nitrates or chlorides, in various amounts in the range 150-500 wt ppm and then freeze-dried to produce nanosized doped powder (~150 nm). The powder was sintered by SPS to yield transparent polycrystalline alpha alumina. The influence of the nature of the doping element and the starting salt, the thermal treatment before sintering and the sintering emperature on the transparency of the ceramics were investigated. The transparency of the ceramics of nanosized Al2O3 was shown to depend mainly on the way the powder was prepared, the nature of the doping salt also had an effect. Finally, a high real inline transmittance, reaching 48.1% was achieved after optimization

    Lagrangian approach and dissipative magnetic systems

    Full text link
    A Lagrangian is introduced which includes the coupling between magnetic moments m\mathbf{m} and the degrees of freedom σ\boldsymbol{\sigma} of a reservoir. In case the system-reservoir coupling breaks the time reversal symmetry the magnetic moments perform a damped precession around an effective field which is self-organized by the mutual interaction of the moments. The resulting evolution equation has the form of the Landau-Lifshitz-Gilbert equation. In case the bath variables are constant vector fields the moments m\mathbf{m} fulfill the reversible Landau-Lifshitz equation. Applying Noether's theorem we find conserved quantities under rotation in space and within the configuration space of the moments.Comment: 12 pages, 1 figur

    Economic factors influencing zoonotic disease dynamics: demand for poultry meat and seasonal transmission of avian influenza in Vietnam

    Get PDF
    While climate is often presented as a key factor influencing the seasonality of diseases, the importance of anthropogenic factors is less commonly evaluated. Using a combination of methods-wavelet analysis, economic analysis, statistical and disease transmission modelling-we aimed to explore the influence of climatic and economic factors on the seasonality of H5N1 Highly Pathogenic Avian Influenza in the domestic poultry population of Vietnam. We found that while climatic variables are associated with seasonal variation in the incidence of avian influenza outbreaks in the North of the country, this is not the case in the Centre and the South. In contrast, temporal patterns of H5N1 incidence are similar across these 3 regions: periods of high H5N1 incidence coincide with Lunar New Year festival, occurring in January-February, in the 3 climatic regions for 5 out of the 8 study years. Yet, daily poultry meat consumption drastically increases during Lunar New Year festival throughout the country. To meet this rise in demand, poultry production and trade are expected to peak around the festival period, promoting viral spread, which we demonstrated using a stochastic disease transmission model. This study illustrates the way in which economic factors may influence the dynamics of livestock pathogens

    Effect of amount of doping agent on sintering, microstructure and optical properties of Zr- and La-doped alumina sintered by SPS

    Get PDF
    SPS-produced α-alumina samples are prepared from powders doped with different amounts of Zr4+ and La3+ cations. Zr4+ cations segregate at grain boundaries. m-ZrO2 particles are formed at 570 but not at 280 cat ppm. A β-alumina LaAl11O18 structure is found at 310 cat ppm when the lanthanum grain boundary solubility limit is exceeded (∼200 cat ppm). 100 cat ppm La is sufficient to block the diffusion path across grain boundaries and inhibit grain growth. Both doping cations disturb the grain boundary diffusion whatever their amount. They delay the densification at higher temperatures while limiting grain growth. The real in-line transmittance (RIT) of α-alumina is improved due to the reduced grain size. Nevertheless, increasing the cation amount leads to an increase in porosity or even the formation of secondary phase particles, both detrimental for optical properties. Finally, optimised amounts of cation of 200 and 150 cat ppm are found for La- and Zr-doped alumina, respectively

    Self-injurious behaviour in young children with Lesch-Nyhan syndrome

    Get PDF
    The early development of self-injurious behaviour in three young boys (aged 17,25, and 30 months at start of study) with Lesch-Nyhan syndrome was examined by means of parental interviews and by direct observations completed at 3 to 4 monthly intervals over an 18-month period. Results suggest that the self-injury began in a different way from that of other young children with autism and/or developmental disabilities in that, from the start, self-injurious responses were sudden and violent, rather than emerging gradually over time. Drastic measures, such as removal of the teeth or provision of tooth guards, were often taken to prevent further tissue damage. Direct observations showed that the boys’self-injury occurred at lower rates, but their carers were highly concerned about the behaviour. Sequential analysis of the observational data indicated that on some occasions the children were more likely to self-injure during periods of low social interaction, suggesting that their self-injury may have been influenced by environmental factors. The theoretical and practical implications of these findings are discussed

    Protein diffusion through charged nanopores with different radii at low ionic strength

    Full text link
    [EN] The diffusion of two similar molecular weight proteins, bovine serum albumin (BSA) and bovine haemoglobin (BHb), through nanoporous charged membranes with a wide range of pore radii is studied at low ionic strength. The effects of the solution pH and the membrane pore diameter on the pore permeability allow quantifying the electrostatic interaction between the chargedpore and the protein. Because of the large screening Debye length, both surface and bulk diffusion occur simultaneously. By increasing the pore diameter, the permeability tends to the bulk self-diffusion coefficient for each protein. By decreasing the pore diameter, the charges on the pore surface electrostatically hinder the transport even at the isoelectric point of the protein. Surprisingly, even at pore sizes 100 times larger than the protein, the electrostatic hindrance still plays a major role in the transport. The experimental data are qualitatively explained using a two-region model for the membrane pore and approximated equations for the pH dependence of the protein and pore charges. The experimental and theoretical results should be useful for designing protein separation processes based on nanoporous charged membranes.This work was supported by a grant from the University of California Office of the President UCOP Lab Fee Program. P.R. and S.M. acknowledge the financial support from the Ministry of Economy and Competitiveness of Spain and FEDER (project PROMAT2012-32084) and the Generalitat Valenciana (project PROMETEO/GV/0069). We thank Mr Victor Awad and Mr Linh Doan for laboratory assistance. We also thank an anonymous referee for valuable comments.Stroeve, P.; Rahman, M.; Naidu, LD.; Chu, G.; Mahmoudi, M.; Ramirez Hoyos, P.; Mafé, S. (2014). Protein diffusion through charged nanopores with different radii at low ionic strength. Physical Chemistry Chemical Physics. 16(39):21570-21576. https://doi.org/10.1039/c4cp03198aS21570215761639Pujar, N. S., & Zydney, A. L. (1998). Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Journal of Chromatography A, 796(2), 229-238. doi:10.1016/s0021-9673(97)01003-0Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029Ileri, N., Faller, R., Palazoglu, A., Létant, S. E., Tringe, J. W., & Stroeve, P. (2013). Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys. Chem. Chem. Phys., 15(3), 965-971. doi:10.1039/c2cp43400hBurns, D. B., & Zydney, A. L. (2001). Contributions to electrostatic interactions on protein transport in membrane systems. AIChE Journal, 47(5), 1101-1114. doi:10.1002/aic.690470517Chun, K.-Y., & Stroeve, P. (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653-4658. doi:10.1021/la011250bOsmanbeyoglu, H. U., Hur, T. B., & Kim, H. K. (2009). Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science, 343(1-2), 1-6. doi:10.1016/j.memsci.2009.07.027Tanford, C., & Buzzell, J. G. (1956). The Viscosity of Aqueous Solutions of Bovine Serum Albumin between pH 4.3 and 10.5. The Journal of Physical Chemistry, 60(2), 225-231. doi:10.1021/j150536a020Stroeve, P., & Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 29(6), 259-266. doi:10.1016/j.tibtech.2011.02.002Ho, C.-C., & Zydney, A. L. (2001). Protein Fouling of Asymmetric and Composite Microfiltration Membranes. Industrial & Engineering Chemistry Research, 40(5), 1412-1421. doi:10.1021/ie000810jKu, J.-R., & Stroeve, P. (2004). Protein Diffusion in Charged Nanotubes:  «On−Off» Behavior of Molecular Transport. Langmuir, 20(5), 2030-2032. doi:10.1021/la0357662Yu, S., Lee, S. B., Kang, M., & Martin, C. R. (2001). Size-Based Protein Separations in Poly(ethylene glycol)-Derivatized Gold Nanotubule Membranes. Nano Letters, 1(9), 495-498. doi:10.1021/nl010044lYu, S., Lee, S. B., & Martin, C. R. (2003). Electrophoretic Protein Transport in Gold Nanotube Membranes. Analytical Chemistry, 75(6), 1239-1244. doi:10.1021/ac020711aHou, Z., Abbott, N. L., & Stroeve, P. (2000). Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes. Langmuir, 16(5), 2401-2404. doi:10.1021/la991045kBöhme, U., & Scheler, U. (2007). Effective charge of bovine serum albumin determined by electrophoresis NMR. Chemical Physics Letters, 435(4-6), 342-345. doi:10.1016/j.cplett.2006.12.068Beretta, S., Chirico, G., Arosio, D., & Baldini, G. (1997). Role of Ionic Strength on Hemoglobin Interparticle Interactions and Subunit Dissociation from Light Scattering. Macromolecules, 30(25), 7849-7855. doi:10.1021/ma971137lGaigalas, A. K., Hubbard, J. B., McCurley, M., & Woo, S. (1992). Diffusion of bovine serum albumin in aqueous solutions. The Journal of Physical Chemistry, 96(5), 2355-2359. doi:10.1021/j100184a063LaGattuta, K. J., Sharma, V. S., Nicoli, D. F., & Kothari, B. K. (1981). Diffusion coefficients of hemoglobin by intensity fluctuation spectroscopy: effects of varying pH and ionic strength. Biophysical Journal, 33(1), 63-79. doi:10.1016/s0006-3495(81)84872-2Mafé, S., Manzanares, J. A., & Ramirez, P. (2003). Modeling of surface vs. bulk ionic conductivity in fixed charge membranes. Phys. Chem. Chem. Phys., 5(2), 376-383. doi:10.1039/b209438jBiesheuvel, P. M., Stroeve, P., & Barneveld, P. A. (2004). Effect of Protein Adsorption and Ionic Strength on the Equilibrium Partition Coefficient of Ionizable Macromolecules in Charged Nanopores. The Journal of Physical Chemistry B, 108(45), 17660-17665. doi:10.1021/jp047913qBiesheuvel, P. M., & Wittemann, A. (2005). A Modified Box Model Including Charge Regulation for Protein Adsorption in a Spherical Polyelectrolyte Brush. The Journal of Physical Chemistry B, 109(9), 4209-4214. doi:10.1021/jp0452812Keesom, W. ., Zelenka, R. ., & Radke, C. . (1988). A zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. Journal of Colloid and Interface Science, 125(2), 575-585. doi:10.1016/0021-9797(88)90024-0G. B. Benedek and F. M. H.Villars , Physics with illustrative examples from Medicine and Biology (Statistical Physics) , Springer-Verlag , Heidelberg , 2000Arosio, D., Kwansa, H. E., Gering, H., Piszczek, G., & Bucci, E. (2001). Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Biopolymers, 63(1), 1-11. doi:10.1002/bip.1057Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography A, 152(1), 21-32. doi:10.1016/s0021-9673(00)85330-3Beck, R. E., & Schultz, J. S. (1970). Hindered Diffusion in Microporous Membranes with Known Pore Geometry. Science, 170(3964), 1302-1305. doi:10.1126/science.170.3964.1302Burns, D. B., & Zydney, A. L. (1999). Effect of solution pH on protein transport through ultrafiltration membranes. Biotechnology and Bioengineering, 64(1), 27-37. doi:10.1002/(sici)1097-0290(19990705)64:13.0.co;2-eSchoch, R. B., Bertsch, A., & Renaud, P. (2006). pH-Controlled Diffusion of Proteins with Different pI Values Across a Nanochannel on a Chip. Nano Letters, 6(3), 543-547. doi:10.1021/nl052372hDurand, N. F. Y., Dellagiacoma, C., Goetschmann, R., Bertsch, A., Märki, I., Lasser, T., & Renaud, P. (2009). Direct Observation of Transitions between Surface-Dominated and Bulk Diffusion Regimes in Nanochannels. Analytical Chemistry, 81(13), 5407-5412. doi:10.1021/ac900617bRohani, M. M., & Zydney, A. L. (2010). Role of electrostatic interactions during protein ultrafiltration. Advances in Colloid and Interface Science, 160(1-2), 40-48. doi:10.1016/j.cis.2010.07.002Rohani, M. M., & Zydney, A. L. (2009). Effect of surface charge distribution on protein transport through semipermeable ultrafiltration membranes. Journal of Membrane Science, 337(1-2), 324-331. doi:10.1016/j.memsci.2009.04.007Mafé, S., Manzanares, J. A., & Pellicer, J. (1990). On the introduction of the pore wall charge in the space-charge model for microporous membranes. Journal of Membrane Science, 51(1-2), 161-168. doi:10.1016/s0376-7388(00)80899-6Bosma, J. C., & Wesselingh, J. A. (1998). pH dependence of ion-exchange equilibrium of proteins. AIChE Journal, 44(11), 2399-2409. doi:10.1002/aic.690441108Shi, Q., Zhou, Y., & Sun, Y. (2008). Influence of pH and Ionic Strength on the Steric Mass-Action Model Parameters around the Isoelectric Point of Protein. Biotechnology Progress, 21(2), 516-523. doi:10.1021/bp049735oJönsson, B., & Ståhlberg, J. (1999). The electrostatic interaction between a charged sphere and an oppositely charged planar surface and its application to protein adsorption. Colloids and Surfaces B: Biointerfaces, 14(1-4), 67-75. doi:10.1016/s0927-7765(99)00025-9Brenner, H., & Gaydos, L. J. (1977). The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. Journal of Colloid and Interface Science, 58(2), 312-356. doi:10.1016/0021-9797(77)90147-3Cannell, D. S., & Rondelez, F. (1980). Diffusion of Polystyrenes through Microporous Membranes. Macromolecules, 13(6), 1599-1602. doi:10.1021/ma60078a046Kuo, T.-C., Sloan, L. A., Sweedler, J. V., & Bohn, P. W. (2001). Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow:  Effect of Surface Charge Density and Debye Length. Langmuir, 17(20), 6298-6303. doi:10.1021/la010429jAPEL, P., BLONSKAYA, I., DMITRIEV, S., ORELOVITCH, O., & SARTOWSKA, B. (2006). Structure of polycarbonate track-etch membranes: Origin of the «paradoxical» pore shape. Journal of Membrane Science, 282(1-2), 393-400. doi:10.1016/j.memsci.2006.05.04
    corecore