22 research outputs found

    Implementation-First Approach of Developing Formal Semantics of a Simulation Language in VDM-SL

    Full text link
    Formal specification is a basis for rigorous software implementation. VDM-SL is a formal specification language with an extensive executable subset. Successful cases of VDM-family including VDM-SL have shown that producing a well-tested executable specification can reduce the cost of the implementation phase. This paper introduces and discusses the reversed order of specification and implementation. The development of a multi-agent simulation language called \remobidyc is described and examined as a case study of defining a formal specification after initial implementation and reflecting the specification into the implementation code

    The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data

    Get PDF
    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≄2 d after sustained strong wind or heavy rain (top 5th percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typically <2°C. Day-to-day temperature change, in the absence of storms, often exceeded storm-induced temperature changes. Because storm-induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions

    Scientists’ Warning to Humanity: Rapid degradation of the world\u27s large lakes

    Get PDF
    Large lakes of the world are habitats for diverse species, including endemic taxa, and are valuable resources that provide humanity with many ecosystem services. They are also sentinels of global and local change, and recent studies in limnology and paleolimnology have demonstrated disturbing evidence of their collective degradation in terms of depletion of resources (water and food), rapid warming and loss of ice, destruction of habitats and ecosystems, loss of species, and accelerating pollution. Large lakes are particularly exposed to anthropogenic and climatic stressors. The Second Warning to Humanity provides a framework to assess the dangers now threatening the world\u27s large lake ecosystems and to evaluate pathways of sustainable development that are more respectful of their ongoing provision of services. Here we review current and emerging threats to the large lakes of the world, including iconic examples of lake management failures and successes, from which we identify priorities and approaches for future conservation efforts. The review underscores the extent of lake resource degradation, which is a result of cumulative perturbation through time by long-term human impacts combined with other emerging stressors. Decades of degradation of large lakes have resulted in major challenges for restoration and management and a legacy of ecological and economic costs for future generations. Large lakes will require more intense conservation efforts in a warmer, increasingly populated world to achieve sustainable, high-quality waters. This Warning to Humanity is also an opportunity to highlight the value of a long-term lake observatory network to monitor and report on environmental changes in large lake ecosystems

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.Peer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events, such as storms, have increased in frequency, intensity and duration. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. For lake ecosystems, high winds and rainfall associated with storms are linked by short term runoff events from catchments and physical mixing of the water column. Although we have a well-developed understanding of how such wind and precipitation events alter lake physical processes, our mechanistic understanding of how these short-term disturbances 48 translate from physical forcing to changes in phytoplankton communities is poor. Here, we provide a conceptual model that identifies how key storm features (i.e., the frequency, intensity, and duration of wind and precipitation) interact with attributes of lakes and their watersheds to generate changes in a lake’s physical and chemical environment and subsequently phytoplankton community structure and dynamics. We summarize the current understanding of storm-phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions by generating testable hypotheses across a global gradient of lake types and environmental conditions.Fil: Stockwell, Jason D.. University of Vermont; Estados UnidosFil: Adrian, Rita. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Andersen, Mikkel. Dundalk Institute of Technology; IrlandaFil: Anneville, Orlane. Institut National de la Recherche Agronomique; FranciaFil: Bhattacharya, Ruchi. University of Missouri; Estados UnidosFil: Burns, Wilton G.. University of Vermont; Estados UnidosFil: Carey, Cayelan C.. Virginia Tech University; Estados UnidosFil: Carvalho, Laurence. Freshwater Restoration & Sustainability Group; Reino UnidoFil: Chang, ChunWei. National Taiwan University; RepĂșblica de ChinaFil: De Senerpont Domis, Lisette N.. Netherlands Institute of Ecology; PaĂ­ses BajosFil: Doubek, Jonathan P.. University of Vermont; Estados UnidosFil: Dur, GaĂ«l. Shizuoka University; JapĂłnFil: Frassl, Marieke A.. Griffith University; AustraliaFil: Gessner, Mark O.. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Hejzlar, Josef. Biology Centre of the Czech Academy of Sciences; RepĂșblica ChecaFil: Ibelings, Bas W.. University of Geneva; SuizaFil: Janatian, Nasim. Estonian University of Life Sciences; EstoniaFil: Kpodonu, Alfred T. N. K.. City University of New York; Estados UnidosFil: Lajeunesse, Marc J.. University of South Florida; Estados UnidosFil: Lewandowska, Aleksandra M.. Tvarminne Zoological Station; FinlandiaFil: Llames, Maria Eugenia del Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Matsuzaki, Shin-ichiro S.. National Institute for Environmental Studies; JapĂłnFil: Nodine, Emily R.. Rollins College; Estados UnidosFil: NĂ”ges, Peeter. Estonian University of Life Sciences; EstoniaFil: Park, Ho-Dong. Shinshu University; JapĂłnFil: Patil, Vijay P.. US Geological Survey; Estados UnidosFil: Pomati, Francesco. Swiss Federal Institute of Water Science and Technology; SuizaFil: Rimmer, Alon. Kinneret Limnological Laboratory; IsraelFil: Rinke, Karsten. Helmholtz-Centre for Environmental Research; AlemaniaFil: Rudstam, Lars G.. Cornell University; Estados UnidosFil: Rusak, James A.. Ontario Ministry of the Environment and Climate Change; CanadĂĄFil: Salmaso, Nico. Research and Innovation Centre - Fondazione Mach; ItaliaFil: Schmitt, François. Laboratoire d’OcĂ©anologie et de GĂ©osciences; FranciaFil: Seltmann, Christian T.. Dundalk Institute of Technology; IrlandaFil: Souissi, Sami. Universite Lille; FranciaFil: Straile, Dietmar. University of Konstanz; AlemaniaFil: Thackeray, Stephen J.. Lancaster Environment Centre; Reino UnidoFil: Thiery, Wim. Vrije Unviversiteit Brussel; BĂ©lgica. Institute for Atmospheric and Climate Science; SuizaFil: Urrutia Cordero, Pablo. Uppsala University; SueciaFil: Venail, Patrick. Universidad de Ginebra; SuizaFil: Verburg, Piet. 8National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Williamson, Tanner J.. Miami University; Estados UnidosFil: Wilson, Harriet L.. Dundalk Institute of Technology; IrlandaFil: Zohary, Tamar. Israel Oceanographic & Limnological Research; IsraelGLEON 20: All Hands' MeetingRottnest IslandAustraliaUniversity of Western AustraliaUniversity of AdelaideGlobal Lake Ecological Observatory Networ

    Approche multi-échelle pour l'étude de deux copépodes vivant dans deux environnements contrastés : de l'éthologie à la dynamique de population

    No full text
    Les copĂ©podes calanoides Eurytemora affinis et Pseudodiaptomnus annandalei sont des espĂšces dominant respectivement les communautĂ©s zooplanctoniques des estuaires tempĂ©rĂ©s et tropicaux. Ces deux espĂšces, bien qu’issues de milieux contrastĂ©s, prĂ©sentent de nombreuses similitudes. Cependant leur comportement n’a Ă©tĂ© que peu Ă©tudiĂ©. L’approche multi-Ă©chelle utilisĂ©e au cours de cette thĂšse pour Ă©tudier ces deux espĂšces combine des analyses empiriques du comportement des copĂ©podes Ă  l’échelle de l’individu avec la modĂ©lisation individu-centrĂ©. La partie consacrĂ©e Ă  la petite Ă©chelle nous a permis d’explorer comment les stades adultes des deux espĂšces nagent et s’accouplent. Ces diffĂ©rents processus ont Ă©tĂ© apprĂ©hendĂ©s en laboratoire via des techniques d’enregistrement vidĂ©o en deux et trois dimensions. Avec l’approche de modĂ©lisation individu-centrĂ©, nous avons dans un premier temps dĂ©veloppĂ© un modĂšle constituant une reprĂ©sentation rĂ©aliste du processus de reproduction chez les espĂšces de copĂ©pode portant leurs Ɠufs. Ce modĂšle a ensuite Ă©tĂ© intĂ©grĂ© dans un modĂšle reproduisant le cycle de vie complet permettant de simuler le dĂ©veloppement sur plusieurs gĂ©nĂ©rations Ă  tempĂ©rature constantes. A l’aide du modĂšle consacrĂ© Ă  la reproduction, nous avons montrĂ© comment un processus observĂ© Ă  l’échelle de l’individu, i.e. la sĂ©lection des mĂąles par les femelles, peut affecter la production moyenne de la population. Enfin, l’intĂ©gration dans le modĂšle cycle de vie de l’effet de la variation de tempĂ©rature et d’une variation saisonniĂšre de la survie des stades adultes et larvaires nous a permis de simuler la dynamique de population d’E.affinis sur plusieurs annĂ©es.The calanoid copepods Eurytemora affinis and Pseudodiaptomus annandalei are among the most dominant zooplankton species in respectively temperate and sub-tropical/tropical estuaries. Both species, while from contrasted environment, exhibit lots of similarity However their behaviour is scarcely studied. The multi-scale approach applied along this thesis for the study of these two species combined empirical analysis of copepod behavior with individual based modeling. The part of the thesis dedicated to small scales studies lead to the description of how the reproductive stages of these two species swim, mate and reproduce. These different processes were grasped throughout two or three dimensional filming experiments conducted in laboratory. Through the individual-based modeling approach, we first developed an individual-based model which constitutes a realistic representation of the reproduction process in egg-carrying copepods. This model was subsequently integrated into a model that represent the entire life cycle of such copepods allowing the simulation of the development of several generations for constant temperature conditions. With the model dedicated to reproduction, we showed how a process observed at the individual scale, i.e., the female mate selection, may affect the mean production of the population. Finally, the integration of the effect of temperature variation on development and reproduction as well as a seasonal variation of adults and nauplii survival in the model representing the life cycle lead to the simulation of the population dynamic of E. affinis over several years

    Plasticity in phytoplankton annual periodicity: an adaptation to long-term environmental changes

    No full text
    International audienceBecause phytoplankton communities exhibit seasonal patterns driven by changes in physical factors, grazing pressure, and nutrient limitations, climate change, in combination with local phosphorus management policies are expected to impact phytoplankton annual dynamic. We used long-term monitoring data from Lake Geneva (from 1974 to 2010) to test if changes in phytoplankton seasonal succession across years is related to re-oligotrophication, inter-annual variability in thermal conditions, and Daphnia sp. density. We used a Bayesian method to identify species assemblages and wavelet analysis to detect transient dynamics in seasonal periodicity. A decrease in phosphorus concentrations appeared to play a major role in the inter-annual replacement of species assemblages. Furthermore, some species assemblages exhibited a change in their seasonal periodicity that was most likely induced by changes in Daphnia sp. density. Finally, we demonstrated that flexibility in the pattern of phytoplankton seasonal successions played a stabilizing role at the community level. The results suggest that phenology and inter-annual changes in seasonal dynamics of phytoplankton assemblages are important components to consider for explaining long-term variability in phytoplankton community

    Combined effects of temperature and food concentration on growth and reproduction of eodiaptomus japonicus(Copepoda: Calanoida) from lake Biwa (Japan)

    No full text
    International audience1.Life history traits of the freshwater calanoid copepod Eodiaptomus japonicus from Lake Biwa were examined in the laboratory. Four different food concentrations (FC, 10(3), 5x10(3), 10(4) and 5x10(4)cellsmL(-1)) and two temperature conditions (15 and 25 degrees C) were used to clarify the combined effects of those two factors on life history traits. 2.A survival rate of more than 70% was observed at the two medium FCs at 15 degrees C, although survival was 15 degrees C. 5.Adult body sizes under food-limited conditions in this study are at the lower end of the range of those observed insitu, while those predicted from insitu temperatures, assuming non-limiting food conditions, were always larger than those of natural populations. Therefore, food shortage appears to be the most important factor affecting both growth and reproduction of E.japonicus in Lake Biwa
    corecore