936 research outputs found

    Demodulation of Spatial Carrier Images: Performance Analysis of Several Algorithms Using a Single Image

    Get PDF
    http://link.springer.com/article/10.1007%2Fs11340-013-9741-6#Optical full-field techniques have a great importance in modern experimental mechanics. Even if they are reasonably spread among the university laboratories, their diffusion in industrial companies remains very narrow for several reasons, especially a lack of metrological performance assessment. A full-field measurement can be characterized by its resolution, bias, measuring range, and by a specific quantity, the spatial resolution. The present paper proposes an original procedure to estimate in one single step the resolution, bias and spatial resolution for a given operator (decoding algorithms such as image correlation, low-pass filters, derivation tools ...). This procedure is based on the construction of a particular multi-frequential field, and a Bode diagram representation of the results. This analysis is applied to various phase demodulating algorithms suited to estimate in-plane displacements.GDR CNRS 2519 “Mesures de Champs et Identification en Mécanique des Solide

    К вопросу инвестиций в угольные шахты

    Get PDF
    Визначено доцільність інвестицій у вугільне виробництво України. Розглянуто шляхи підвищення інвестиційної привабливості вугільних шахт України, а також формування відповідного інвестиційного клімату у державі. Ключові слова: економіка, інвестиції, інновації, собівартість, прибуток, вугледобувні підприємства.Определена целесообразность инвестиций в угольное производство Украины. Рассмотрены пути повышения инвестиционной привлекательности угольных шахт Украины, а также формирования соответствующего инвестиционного климата в стране. Ключевые слова: экономика, инвестиции, инновации, себестоимость, прибыль, угледобывающие предприятия.Determine the feasibility of investment in coal production in Ukraine. Ways of improvement of investment attractiveness of Ukraine’s coal mines, as well as the formation of the investment climate in the country. Key words: economy, investment, innovations, prime cost, profit, coal producing plants

    Process epistemology in the COVID-19 era: rethinking the research process to avoid dangerous forms of reification

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordWhether we live in a world of autonomous things, or a world of interconnected processes in constant flux, is an ancient philosophical debate. Modern biology provides decisive reasons for embracing the latter view. How does one understand the practices and outputs of science in such a dynamic, ever-changing world - and particularly in an emergency situation such as the COVID-19 pandemic, where scientific knowledge has been regarded as bedrock for decisive social interventions? We argue that key to answering this question is to consider the role of the activity of reification within the research process. Reification consists in the identification of more or less stable features of the flux, and treating these as constituting stable things. As we illustrate with reference to biological and biomedical research on COVID-19, reification is a necessary component of any process of inquiry and comes in at least two forms: (1) means reification (phenomena-to-object), when researchers create objects meant to capture features of the world, or phenomena, in order to be able to study them; and (2) target reification (object-to-phenomena), when researchers infer an understanding of phenomena from an investigation of the epistemic objects created to study them. We note that both objects and phenomena are dynamic processes and argue that have no reason to assume that changes in objects and phenomena track one another. We conclude that failure to acknowledge these forms of reification and their epistemic role in scientific inquiry can have dire consequences for how the resulting knowledge is interpreted and used.European Research Council (ERC)Engineering and Physical Sciences Research Council (EPSRC

    Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia

    Get PDF
    To examine the mechanisms of carbon mobilization and biodegradation during permafrost thawing and to establish a link between organic carbon (OC) and other chemical and microbiological parameters in forming thermokarst (thaw) lakes, we studied the biogeochemistry of OC and trace elements (TEs) in a chronosequence of small lakes that are being formed due to permafrost thawing in the northern part of western Siberia. Twenty lakes and small ponds of various sizes and ages were sampled for dissolved and colloidal organic carbon, metals and culturable heterotrophic bacterial cell number. We observed a sequence of ecosystems from peat thawing and palsa degradation due to permafrost subsidence in small ponds to large, km-size lakes that are subject to drainage to, finally, the khasyrey (drained lake) formation. There is a systematic evolution of both total dissolved and colloidal concentration of OC and TEs in the lake water along with the chronosequence of lake development that may be directly linked to the microbial mineralization of dissolved organic matter and the liberation of the inorganic components (Fe, Al, and TEs) from the organo-mineral colloids. <br><br> In this chronosequence of lake development, we observed an apparent decrease in the relative proportion of low molecular weight <1 kDa (1 kDa ~ 1 nm) OC concentration along with a decrease in the concentration of total dissolved (<0.45 μm) OC. This decrease was accompanied by an increase in the small size organic ligands (probably autochthonous exometabolites produced by the phytoplankton) and a simultaneous decrease in the proportion of large-size organic (humic) complexes of allochthonous (soil) origin. This evolution may be due to the activity of heterotrophic bacterioplankton that use allochthonous organic matter and dissolved nutrients originating from peat lixiviation. Most insoluble TEs demonstrate a systematic decrease in concentration during filtration (5 μm, 0.45 μm) exhibiting a similar pattern among different samples. At the same time, there is an increase in the relative proportion of large size particles over the <1 kDa fraction for most insoluble elements along the chronosequence of lake evolution. TEs are likely to be bound to colloidal OC and coprecipitate with the mineral (Fe, Al) part of the colloids. Upon progressive consumption of dissolved OC by the heterotrophic bacteria, there is liberation of Fe, Al, and insoluble TEs in the water column that may be subjected to coagulation in the form of particles or large-size mineral colloids

    Changes in seabed morphology, mud temperature and free gas venting at the H ̊akon Mosby mud volcano, offshore northern Norway, over the time period 2003-2006

    Get PDF
    The HAyenkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage

    Study of the pitch change of carbon coils during their growth

    Get PDF
    AbstractIn the present paper, carbon coils (CCs) were prepared by CVD. Their morphology, particularly pitch changes of the carbon coils prepared in different conditions were observed. It was found that the carbon source flow plays an important role in carbon coil growth and its morphology evolution. The appropriate atmosphere and flow rate is beneficial to the steady reactivity of catalyst particles. As such each carbon coil can grow well and have an exact growth rate. When the carbon supply is sufficient, the CCs exhibit close spiral and small coil diameter. When carbon supply decreases, small carbon supply leads to large pitch and coil diameter. CCs can be synthesized with different coil pitch under different carbon supply. This may be of great significance for the controllable preparation of carbon coil and its application

    NUV/Blue spectral observations of sprites in the 320-460 nm region: N2{\mathrm N_2} (2PG) Emissions

    Full text link
    A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV/blue emissions to be predominantly N2 (2PG). The negligible level of N2+ (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of ~1.8 eV, in agreement with our other NUV observations.Comment: 7 pages, 2 figures, 1 table, JGR Space Physics "Effects of Thunderstorms and Lightning in the Upper Atmosphere" Special Sectio

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    Phase Transition in a Model with Non-Compact Symmetry on Bethe Lattice and the Replica Limit

    Full text link
    We solve O(n,1)O(n,1) nonlinear vector model on Bethe lattice and show that it exhibits a transition from ordered to disordered state for 0n<10 \leq n < 1. If the replica limit n0n\to 0 is taken carefully, the model is shown to reduce to the corresponding supersymmetric model. The latter was introduced by Zirnbauer as a toy model for the Anderson localization transition. We argue thus that the non-compact replica models describe correctly the Anderson transition features. This should be contrasted to their failure in the case of the level correlation problem.Comment: 21 pages, REVTEX, 2 Postscript figures, uses epsf styl
    corecore