45 research outputs found

    Association Between Sedentary Time and Quality of Life From the Osteoarthritis Initiative: Who Might Benefit Most From Treatment?

    Get PDF
    Objective To investigate the relationship between sedentary behavior and quality-adjusted life years (QALYs) among participants in the Osteoarthritis Initiative. Design Longitudinal, observational design. Setting Osteoarthritis Initiative cohort. Participants Individuals (N=1794) from a prospective, multicenter longitudinal cohort were classified into quantile groups based on average daily sedentary time (most sedentary, quartile 1 [Q1] ≄11.6h; 10.7h≀ Q2 Interventions Not applicable. Main Outcome Measures Individual QALYs were estimated over 2 years from the area under the curve of health-related utility scores derived from the Medical Outcomes Study 12-Item Short-Form Health Survey versus time. The relationship between baseline sedentary behavior and median 2-year QALYs was estimated using quantile regression adjusted for socioeconomic factors and body mass index. Results Lower QALYs over 2 years were more frequently found among the most sedentary (Q1, median 1.59), and QALYs increased as time spent in baseline sedentary behavior decreased (median QALYs for Q2, 1.64; Q3, 1.65; Q4, 1.65). The relationship of sedentary time and median QALY change was only significant for the most sedentary Q1 group, where an additional hour of sedentary behavior significantly reduced QALYs by −.072 (95% confidence interval, −.121 to −.020). Conclusions Our findings suggest that individuals with the most extreme sedentary profiles may be vulnerable to additional losses of quality of life if they become more sedentary. Targeting these individuals to decrease sedentary behavior has the potential to be cost-effective

    Functional decline after incident wrist fractures—Study of Osteoporotic Fractures: prospective cohort study

    Get PDF
    Objective To study the effect of an incident wrist fracture on functional status in women enrolled in the Study of Osteoporotic Fractures

    Physical Activity Minimum Threshold Predicting Improved Function in Adults With Lower‐Extremity Symptoms

    Get PDF
    Objective To identify an evidence‐based minimum physical activity threshold to predict improved or sustained high function for adults with lower‐extremity joint symptoms. Methods Prospective multisite data from 1,629 adults, age ≄49 years with symptomatic lower‐extremity joint pain/aching/stiffness, participating in the Osteoarthritis Initiative accelerometer monitoring substudy were clinically assessed 2 years apart. Improved/high function in 2‐year gait speed and patient‐reported outcomes (PROs) were based on improving or remaining in the best (i.e., maintaining high) function quintile compared to baseline status. Optimal thresholds predicting improved/high function were investigated using classification trees for the legacy federal guideline metric requiring 150 minutes/week of moderate‐vigorous (MV) activity in bouts lasting 10 minutes or more (MV‐bout) and other metrics (total MV, sedentary, light intensity activity, nonsedentary minutes/week). Results Optimal thresholds based on total MV minutes/week predicted improved/high function outcomes more strongly than the legacy or other investigated metrics. Meeting the 45 total MV minutes/week threshold had increased relative risk (RR) for improved/high function (gait speed RR 1.8, 95% confidence interval [95% CI] 1.6, 2.1 and PRO physical function RR 1.4, 95% CI 1.3, 1.6) compared to less active adults. Thresholds were consistent across sex, body mass index, knee osteoarthritis status, and age. Conclusion These results supported a physical activity minimum threshold of 45 total MV minutes/week to promote improved or sustained high function for adults with lower‐extremity joint symptoms. This evidence‐based threshold is less rigorous than federal guidelines (≄150 MV‐bout minutes/week) and provides an intermediate goal towards the federal guideline for adults with lower‐extremity symptoms

    A Randomized Trial of a Motivational Interviewing Intervention to Increase Lifestyle Physical Activity and Improve Self-Reported Function in Adults with Arthritis

    Get PDF
    Background Arthritis is a leading cause of chronic pain and functional limitations. Exercise is beneficial for improving strength and function and decreasing pain. We evaluated the effect of a motivational interviewing-based lifestyle physical activity intervention on self-reported physical function in adults with knee osteoarthritis (KOA) or rheumatoid arthritis (RA). Methods Participants were randomized to intervention or control. Control participants received a brief physician recommendation to increase physical activity to meet national guidelines. Intervention participants received the same brief baseline physician recommendation in addition to motivational interviewing sessions at baseline, 3, 6, and 12 months. These sessions focused on facilitating individualized lifestyle physical activity goal setting. The primary outcome was change in self-reported physical function. Secondary outcomes were self-reported pain and accelerometer-measured physical activity. Self-reported KOA outcomes were evaluated by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) for KOA (WOMAC scores range from 0 to 68 for function and 0 to 20 for pain) and the Health Assessment Questionnaire (HAQ) for RA. Outcomes were measured at baseline, 3, 6, 12, and 24 months. Multiple regression accounting for repeated measures was used to evaluate the overall intervention effect on outcomes controlling for baseline values. Results Participants included 155 adults with KOA (76 intervention and 79 control) and 185 adults with RA (93 intervention and 92 control). Among KOA participants, WOMAC physical function improvement was greater in the intervention group compared to the control group [difference = 2.21 (95% CI: 0.01, 4.41)]. WOMAC pain improvement was greater in the intervention group compared to the control group [difference = 0.70 (95% CI: −0.004, 1.41)]. There were no significant changes in physical activity. Among RA participants, no significant intervention effects were found. Conclusion Participants with KOA receiving the lifestyle intervention experienced modest improvement in self-reported function and a trend toward improved pain compared to controls. There was no intervention effect for RA participants. Further refinement of this intervention is needed for more robust improvement in function, pain, and physical activity

    Association of Pain Centralization and Patient‐Reported Pain in Active Rheumatoid Arthritis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156205/2/acr23994_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156205/1/acr23994.pd

    Can fisheries-induced evolution shift reference points for fisheries management?

    Get PDF
    Heino, M., Baulier, L., Boukal, D. S., Ernande, B., Johnston, F. D., Mollet, F. M., Pardoe, H., Therkildsen, N. O., Uusi-HeikkilĂ€, S., Vainikka, A., Arlinghaus, R., Dankel, D. J., Dunlop, E. S., Eikeset, A. M., Enberg, K., Engelhard G. H., JĂžrgensen, C., Laugen, A. T., Matsumura, S., NusslĂ©, S., Urbach, D., Whitlock, R., Rijnsdorp, A. D., and Dieckmann, U. 2013. Can fisheries-induced evolution shift reference points for fisheries management? - ICES Journal of Marine Science, 70: 707-721. Biological reference points are important tools for fisheries management. Reference points are not static, but may change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting” reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true” reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary” reference points for spawning-stock biomass, Blim and Bpa, and the target reference point for fishing mortality, F0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamic

    Can fisheries-induced evolution shift reference points for fisheries management?

    Get PDF
    Biological reference points are important tools for fisheries management. Reference points are not static, butmay change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting" reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true" reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary" reference points for spawning-stock biomass, B-lim and B-pa, and the target reference point for fishing mortality, F-0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamics
    corecore