985 research outputs found

    GILZ-mimics as novel therapeutic agents for progressive multiple sclerosis

    Get PDF
    poster abstractMultiple sclerosis (MS), a leading cause of neurological disability is an inflammatory demyelinating disease of the central nervous system (CNS). The clinical course of MS is highly variable ranging from isolated neurologic episodes to frequently relapsing or progressive disease. Currently there are no effective treatments for progressive MS. The long-term goal of this project is to evaluate a novel therapeutic strategy for progressive MS. Under physiological conditions signaling via the transcription factor, nuclear factor-kappa B (NF-κB) and glucocorticoid (GC) stimulation pathways regulate the immuno-inflammatory responses of the CNS resident glial cells. While NF-κB induces transcriptional activation, signaling via GC receptor functions to suppress immune responses. Persistent activation of NF-κB in the glial cells precipitates neuronal degeneration and axonal loss characteristic of progressive MS. Interactome analysis between the GC and NF-κB pathways suggested a novel strategy to inhibit NF-κB. Glucocorticoid-induced leucine zipper (GILZ) is a GC inducible protein that binds p65, the functionally critical subunit of NF-κB, and prevent transactivation of pathological mediators. The sites of interaction are localized to the proline rich region of the GILZ protein and the p65 transactivation domain. A 23 residue GILZ peptide prevented nuclear translocation of p65 and suppressed disease in an animal model of MS. Structurally GILZ peptide adopted polyproline type II (PPII) helical conformation, a favorable feature for drug development. The objective of this study is to optimize the lead peptide and develop drug like analogs. Specific features of the GILZ-p65 interactions were adapted in the design of over 25 GILZ analogs such that each exhibit optimum PPII helix, bind p65 transactivation domain and potentially accommodate modified residues that enhance the binding specificity with the p65. The analogs were ranked after passing through the Lipinski filter to determine the drug like properties. The top ranked analogs will be evaluated for functional efficacy

    Capillarity Theory for the Fly-Casting Mechanism

    Full text link
    Biomolecular folding and function are often coupled. During molecular recognition events, one of the binding partners may transiently or partially unfold, allowing more rapid access to a binding site. We describe a simple model for this flycasting mechanism based on the capillarity approximation and polymer chain statistics. The model shows that flycasting is most effective when the protein unfolding barrier is small and the part of the chain which extends towards the target is relatively rigid. These features are often seen in known examples of flycasting in protein-DNA binding. Simulations of protein-DNA binding based on well-funneled native-topology models with electrostatic forces confirm the trends of the analytical theory

    On the roles of intrinsically disordered proteins and regions in cell communication and signaling

    Get PDF
    For proteins, the sequence → structure → function paradigm applies primarily to enzymes, transmembrane proteins, and signaling domains. This paradigm is not universal, but rather, in addition to structured proteins, intrinsically disordered proteins and regions (IDPs and IDRs) also carry out crucial biological functions. For these proteins, the sequence → IDP/IDR ensemble → function paradigm applies primarily to signaling and regulatory proteins and regions. Often, in order to carry out function, IDPs or IDRs cooperatively interact, either intra- or inter-molecularly, with structured proteins or other IDPs or intermolecularly with nucleic acids. In this IDP/IDR thematic collection published in Cell Communication and Signaling, thirteen articles are presented that describe IDP/IDR signaling molecules from a variety of organisms from humans to fruit flies and tardigrades (“water bears”) and that describe how these proteins and regions contribute to the function and regulation of cell signaling. Collectively, these papers exhibit the diverse roles of disorder in responding to a wide range of signals as to orchestrate an array of organismal processes. They also show that disorder contributes to signaling in a broad spectrum of species, ranging from micro-organisms to plants and animals

    Uniaxial stress and Zeeman spectroscopy of the 3.324 eV Ge-related photoluminescence in ZnO

    Get PDF
    Recently observed photoluminescence (PL) in ZnO, positioned at 3.324 eV and known to be related to Ge impurities, is investigated here by uniaxial stress and Zeeman spectroscopy measurements. The 3.324 eV PL line shifts but does not split under uniaxial stress both parallel and perpendicular to the c-axis, indicating trigonal defect symmetry. This reinforces the findings of prior work that the defect centre is related to a substitutional Ge impurity in ZnO. Applied magnetic fields result in linear splittings of the line into two components for fields parallel and perpendicular to the c-axis. This result combined with the temperature dependence of the Zeeman spectra enables the line to be assigned to neutral donor bound exciton recombination. Some possible models for the defect are considered

    Spin-flip Raman scattering of the Γ\Gamma-X mixed exciton in indirect band-gap (In,Al)As/AlAs quantum dots

    Full text link
    The band structure of type-I (In,Al)As/AlAs quantum dots with band gap energy exceeding 1.63 eV is indirect in momentum space, leading to long-lived exciton states with potential applications in quantum information. Optical access to these excitons is provided by mixing of the Γ\Gamma- and X-conduction band valleys, from which control of their spin states can be gained. This access is used here for studying the exciton spin-level structure by resonant spin-flip Raman scattering, allowing us to accurately measure the anisotropic hole and isotropic electron gg factors. The spin-flip mechanisms for the indirect exciton and its constituents as well as the underlying optical selection rules are determined. The spin-flip intensity is a reliable measure of the strength of Γ\Gamma-X-valley mixing, as evidenced by both experiment and theory.Comment: 5 pages, 3 figure

    The N-terminal intrinsically disordered domain of mgm101p is localized to the mitochondrial nucleoid.

    Get PDF
    The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted

    Structural basis for activation of calcineurin by calmodulin

    Get PDF
    The highly conserved phosphatase calcineurin plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin. Calmodulin binds to a regulatory domain within calcineurin, causing a conformational change that displaces an autoinhibitory domain from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which calmodulin activates calmodulin-dependent protein kinases. Previously published data has hinted that the regulatory domain of calcineurin is intrinsically disordered. In this work we demonstrate that the regulatory domain is unstructured and that it folds upon binding calmodulin, ousting the autoinhibitory domain from the catalytic site. The regulatory domain is 95 residues long, with the autoinhibitory domain attached to its C-terminal end and the 24 residue calmodulin binding region towards the N-terminal end. This is unlike the calmodulin-dependent protein kinases which have calmodulin binding sites and autoinhibitory domains immediately adjacent in sequence. Our data demonstrate that not only does the calmodulin binding region fold, but that an ~25-30 residue region between it and the autoinhibitory domain also folds, resulting in over half of the regulatory domain adopting α-helical structure. This appears to be the first observation of calmodulin inducing folding of this scale outside of its binding site on a target protein

    The Hg isoelectronic defect in ZnO

    Get PDF
    We report a study of the luminescence due to Hg in ZnO, concentrating on the main zero phonon line (ZPL) at 3.2766(1) eV and its associated phonon sidebands. For a sample implanted with radioactive 192Hg, the ZPL intensity, normalised to that of shallow bound exciton emission, is observed to decrease with an equivalent half-life of 4.5(1) h, very close to the 4.85(20) h half-life of 192Hg. ZnO implanted with stable Hg impurities produces the same luminescence spectrum. Temperature dependent measurements confirm that the zero phonon line is a thermalizing doublet involving one allowed and one largely forbidden transition from excited states separated by 0.91(1)meV to a common ground state. Uniaxial stress measurements show that the allowed transition takes place from an orbitally degenerate excited state to a non-degenerate ground state in a centre of trigonal (C3v) symmetry while the magneto-optical properties are characteristic of electron-hole pair recombination at an isoelectronic defect. The doublet luminescence is assigned to bound exciton recombination involving exchange-split gamma5 and gamma1,2 excited states (using C6v symmetry labels; gamma3 and gamma1,2 using C3v labels) at isoelectronic Hg impurities substituting for Zn in the crystal. The electron and hole g values deduced from the magneto-optical data indicate that this Hg impurity centre in ZnO is hole-attractive

    Structural Basis for Activation of Calcineurin by Calmodulin

    Get PDF
    The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ∼25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein
    corecore