20 research outputs found

    Sequential, structural and functional properties of protein complexes are defined by how folding and binding intertwine.

    Get PDF
    Intrinsically Disordered Proteins (IDPs) fulfill critical biological roles without having the potential to fold on their own. While lacking inherent structure, the majority of IDPs do reach a folded state via interaction with a protein partner, presenting a deep entanglement of the folding and binding process. Protein disorder has been recognized as a major determinant in several properties of proteins, such as sequence, adopted structure upon binding, and function. Yet, the way the binding process is reflected in these features in general lacks a detailed description. Here, we defined three categories of protein complexes depending on the unbound structural state of the interactors, and analyzed them in detail. We found that strikingly, the properties of interactors in terms of sequence and adopted structure are defined not only by the intrinsic structural state of the protein itself, but also to a comparable extent by the structural state of the binding partner. The three different types of interactions are also regulated through divergent molecular tactics of post-translational modifications. This not only widens the range of biologically relevant sequence and structure spaces defined by ordered proteins, but also presents distinct molecular mechanisms compatible with specific biological processes, separately for each interaction type. The distinct attributes of different binding modes identified in this study can help to understand how various types of interactions serve as building blocks for the assembly of tightly regulated and highly intertwined regulatory networks

    Physical Background of the Disordered Nature of “Mutual Synergetic Folding” Proteins

    Get PDF
    Intrinsically disordered proteins (IDPs) lack a well-defined 3D structure. Their disordered nature enables them to interact with several other proteins and to fulfil their vital biological roles, in most cases after coupled folding and binding. In this paper, we analyze IDPs involved in a new mechanism, mutual synergistic folding (MSF). These proteins define a new subset of IDPs. Recently we collected information on these complexes and created the Mutual Folding Induced by Binding (MFIB) database. These protein complexes exhibit considerable structural variation, and almost half of them are homodimers, but there is a significant amount of heterodimers and various kinds of oligomers. In order to understand the basic background of the disordered character of the monomers found in MSF complexes, the simplest part of the MFIB database, the homodimers are analyzed here. We conclude that MFIB homodimeric proteins have a larger solvent-accessible main-chain surface area on the contact surface of the subunits, when compared to globular homodimeric proteins. The main driving force of the dimerization is the mutual shielding of the water-accessible backbones and the formation of extra intermolecular interactions

    IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding

    Get PDF
    The structural states of proteins include ordered globular domains as well as intrinsically disordered protein regions that exist as highly flexible conformational ensembles in isolation. Various computational tools have been developed to discriminate ordered and disordered segments based on the amino acid sequence. However, properties of IDRs can also depend on various conditions, including binding to globular protein partners or environmental factors, such as redox potential. These cases provide further challenges for the computational characterization of disordered segments. In this work we present IUPred2A, a combined web interface that allows to generate energy estimation based predictions for ordered and disordered residues by IUPred2 and for disordered binding regions by ANCHOR2. The updated web server retains the robustness of the original programs but offers several new features. While only minor bug fixes are implemented for IUPred, the next version of ANCHOR is significantly improved through a new architecture and parameters optimized on novel datasets. In addition, redox-sensitive regions can also be highlighted through a novel experimental feature

    DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation

    Get PDF
    The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.Fil: Quaglia, Federica. Università di Padova; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Mészáros, Bálint. European Molecular Biology Laboratory; AlemaniaFil: Salladini, Edoardo. Università di Padova; ItaliaFil: Hatos, András. Università di Padova; ItaliaFil: Pancsa, Rita. Research Centre for Natural Sciences; HungríaFil: Chemes, Lucia Beatriz. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Pajkos, Mátyás. Eötvös Loránd University; HungríaFil: Lazar, Tamas. Vlaams Instituut voor Biotechnology; Hungría. Vrije Unviversiteit Brussel; BélgicaFil: Peña Díaz, Samuel. Universitat Autònoma de Barcelona; EspañaFil: Santos, Jaime. Universitat Autònoma de Barcelona; EspañaFil: Ács, Veronika. Research Centre for Natural Sciences; HungríaFil: Farahi, Nazanin. Vlaams Instituut voor Biotechnology; Bélgica. Vrije Unviversiteit Brussel; BélgicaFil: Fichó, Erzsébet. Research Centre for Natural Sciences; HungríaFil: Aspromonte, Maria Cristina. Università di Padova; Italia. Città della Speranza Pediatric Research Institute; ItaliaFil: Bassot, Claudio. Stockholms Universitet; SueciaFil: Chasapi, Anastasia. Centre for Research & Technology Hellas; GreciaFil: Davey, Norman E.. Chester Beatty Laboratories; Reino UnidoFil: Davidović, Radoslav. University of Belgrade; SerbiaFil: Laszlo Holland, Alicia Verónica. European Molecular Biology Laboratory; Alemania. Research Centre for Natural Sciences; HungríaFil: Elofsson, Arne. Stockholms Universitet; SueciaFil: Erdős, Gábor. Eötvös Loránd University; HungríaFil: Gaudet, Pascale. Swiss Institute of Bioinformatics; SuizaFil: Giglio, Michelle. University of Maryland School of Medicine; Estados UnidosFil: Glavina, Juliana. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Iglesias, Valentín. Universitat Autònoma de Barcelona; EspañaFil: Kálmán, Zsófia. Pázmány Péter Catholic University; HungríaFil: Lambrughi, Matteo. Danish Cancer Society Research Center; DinamarcaFil: Leonardi, Emanuela. Università di Padova; Italia. Pediatric Research Institute Città della Speranza; ItaliaFil: Rodriguez Sawicki, Luciana. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore