214 research outputs found

    Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 μg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation

    Modulation of Tcf7l2 Expression Alters Behavior in Mice

    Get PDF
    The comorbidity of type 2 diabetes (T2D) with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ) risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI), which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further

    The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression.

    Get PDF
    Major depression is a highly complex disabling psychiatric disorder affecting millions of people worldwide. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these medications. A better understanding of the neurobiology of depression and the mechanisms underlying antidepressant response is thus critically needed. We previously reported that mice lacking CREB-regulated transcription coactivator 1 (CRTC1) exhibit a depressive-like phenotype and a blunted antidepressant response to the selective serotonin reuptake inhibitor fluoxetine. In this study, we similarly show that Crtc1(-/-) mice are resistant to the antidepressant effect of chronic desipramine in a behavioral despair paradigm. Supporting the blunted response to this tricyclic antidepressant, we found that desipramine does not significantly increase the expression of Bdnf and Nr4a1-3 in the hippocampus and prefrontal cortex of Crtc1(-/-) mice. Epigenetic regulation of neuroplasticity gene expression has been associated with depression and antidepressant response, and histone deacetylase (HDAC) inhibitors have been shown to have antidepressant-like properties. Here, we show that unlike conventional antidepressants, chronic systemic administration of the HDAC inhibitor SAHA partially rescues the depressive-like behavior of Crtc1(-/-) mice. This behavioral effect is accompanied by an increased expression of Bdnf, but not Nr4a1-3, in the prefrontal cortex of these mice, suggesting that this epigenetic intervention restores the expression of a subset of genes by acting downstream of CRTC1. These findings suggest that CRTC1 alterations may be associated with treatment-resistant depression, and support the interesting possibility that targeting HDACs may be a useful therapeutic strategy in antidepressant development

    Pervasive and opposing effects of Unpredictable Chronic Mild Stress (UCMS) on hippocampal gene expression in BALB/cJ and C57BL/6J mouse strains

    Get PDF
    Background: BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. Results: The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. Conclusions: The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder

    Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability

    Get PDF
    Abstract The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD

    Lack of Evidence for Neonatal Misoprostol Neurodevelopmental Toxicity in C57BL6/J Mice

    Get PDF
    Misoprostol is a synthetic analogue of prostaglandin E1 that is administered to women at high doses to induce uterine contractions for early pregnancy termination and at low doses to aid in cervical priming during labor. Because of the known teratogenic effects of misoprostol when given during gestation and its effects on axonal growth in vitro, we examined misoprostol for its potential as a neurodevelopmental toxicant when administered to neonatal C57BL6/J mice. Mice were injected subcutaneously (s.c.) with 0.4, 4 or 40 µg/kg misoprostol on postnatal day 7, the approximate developmental stage in mice of human birth, after which neonatal somatic growth, and sensory and motor system development were assessed. These doses were selected to span the range of human exposure used to induce labor. In addition, adult mice underwent a battery of behavioral tests relevant to neurodevelopmental disorders such as autism including tests for anxiety, stereotyped behaviors, social communication and interactions, and learning and memory. No significant effects of exposure were found for any measure of development or behavioral endpoints. In conclusion, the results of the present study in C57BL/6J mice do not provide support for neurodevelopmental toxicity after misoprostol administration approximating human doses and timed to coincide with the developmental stage of human birth
    corecore