10 research outputs found

    Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus

    Get PDF
    Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis

    Interactions between commensal obligate anaerobes and human intestinal cells : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University, Manawatu, New Zealand

    Get PDF
    The human intestinal epithelium is formed by a single layer of epithelial cells which regulates intestinal barrier permeability. Increased permeability can result in the entry of potentially harmful compounds into the body, and is implicated in autoimmune, inflammatory and atopic diseases. The intestinal tract is inhabited by an estimated 1014 microbes and it is increasingly evident that they affect intestinal barrier function. However, over 90% of commensal intestinal bacteria are obligate anaerobes, making it difficult to co-culture them with oxygen-requiring mammalian cells in vitro. To investigate the interactions between obligate anaerobes and epithelial cells that regulate the intestinal barrier, an apical anaerobic model of the human intestinal epithelium, which utilises a dual-environment co-culture chamber, was developed and validated. The chamber allowed for polarised monolayers of the intestinal cell line Caco-2 to be grown such that the apical (luminal) side was exposed to an anaerobic environment, while maintaining an aerobic basal side. The cell viability and barrier function of Caco-2 monolayers was unaffected by culture in the apical anaerobic model for at least 12 hours. Global gene expression analysis predicted upregulation of cell survival and proliferation in Caco-2 cells cultured in the apical anaerobic model, compared to Caco-2 cells grown under conventional conditions, suggesting an adaptation of the Caco-2 cells to a lower supply of oxygen. The apical anaerobic model was used to co-culture the commensal obligate anaerobe Faecalibacterium prausnitzii with Caco-2 cells. The survival of F. prausnitzii was improved in the anaerobic apical environment compared to when cultured in an aerobic atmosphere. Live F. prausnitzii, but not non-viable (UV-killed) F. prausnitzii, were shown to increase permeability across Caco-2 monolayers. Furthermore, global gene expression analysis suggested that live F. prausnitzii cells have more profound effects on Caco-2 cells than non-viable F. prausnitzii, illustrating the importance of maintaining viability of obligate anaerobes in an in vitro co-culture system. The apical anaerobic model can be used to gain insights into the mechanisms of crosstalk between commensal obligate anaerobic bacteria and intestinal cells, and new knowledge generated using this model will assist in the development of strategies to improve intestinal barrier function

    Investigating effects of probiotics using AgResearch’s dual-environment co-culture system: Final Report

    No full text
    Intestinal barrier dysfunction is associated with poor digestive and systemic health conditions. Thus, there is increasing interest in foods and supplements, including probiotics, that can improve or help maintain intestinal barrier integrity. The objective of this project was to investigate the potential of two proprietary probiotics strains to regulate intestinal barrier function using a physiologically relevant in vitro model of the intestinal epithelium.</p

    Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation

    No full text
    Literature on the effects of cryopreservation and thawing of monocytes or monocyte-derived immature dendritic cells (iDCs) on the subsequent functional capacities of the DCs is limited to a few specific maturation stimuli and is focused on applications in clinical immunotherapy. Given the cardinal role of DCs in regulating tolerance and immunity at mucosal surfaces there is a growing interest in understanding the effect of stromal, microbial and probiotic signals on DC function. Therefore our aim was to investigate the effects of cryopreservation on the functional properties of DCs stimulated with bacteria or the bacterial components using a standardized method. Surface markers CD83 and CD86 were expressed at similar levels on iDCs generated from cryopreserved or freshly isolated monocytes. Cryopreservation of iDCs led to slightly decreased expression of CD86 and CD83 compared to freshly generated iDCs prepared from unfrozen cells but this did not affect the capacity of DCs to acquire fully mature characteristics after stimulation. In contrast the cytokine response to lipoteichoic acid and bacterial stimulation was altered by cryopreservation of monocytes or iDCs, particularly for IL-12p70 which was decreased up to 250 fold or not detected. Cryopreservation also decreased TNF-a and IL-1ß production in stimulated iDCs but to a lesser extent than for IL-12p70, depending on the maturation factors used. The amounts of IL-10 produced by stimulated iDCs were increased up to 3.6 fold when iDCs were cryopreserved, but decreased up to 90 fold when generated from cryopreserved monocytes. Immature DCs are often used to investigate the immunomodulatory properties of probiotics and here we show for the first time that cryopreserved monocytes and cryopreserved iDCs have a skewed cytokine response to microbial stimulation. These findings have implications for the methods used in bacterial-DC immune assays and highlight the importance of comparing different cytokines and stimuli in immune cell cryopreservation protocols. © 2011 Elsevier B.V

    Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white

    No full text
    © 2015 Elsevier Ltd. Abstract The structural properties of amyloid fibrils combined with their highly functional surface chemistry make them an attractive new food ingredient, for example as highly effective gelling agents. However, the toxic role of amyloid fibrils in disease may cause some concern about their food safety because it has not been established unequivocally if consumption of food fibrils poses a health risk to consumers. Here we present a study of amyloid-like fibrils from whey, kidney bean, soy bean, and egg white to partially address this concern. Fibrils showed varied resistance to proteolytic digestion in vitro by either Proteinase K, pepsin or pancreatin. The toxicity of mature fibrils was measured in vitro and compared to native protein, early-stage-fibrillar protein, and sonicated fibrils in two immortalised human cancer cell lines, Caco-2 and Hec-1a. There was no reduction in the viability of either Caco-2 or Hec-1a cells after treatment with a fibril concentration of up to 0.25 mg/mL

    Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus.

    No full text
    Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH-tagG genes, encoding the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced bile-induced biofilm formation. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis

    In vitro antimicrobial efficacy of tobramycin against staphylococcus aureus biofilms in combination with or without DNase I and/or Dispersin B: A preliminary investigation

    No full text
    © Mary Ann Liebert, Inc. 2017.Staphylococcus aureus in biofilms is highly resistant to the treatment with antibiotics, to which the planktonic cells are susceptible. This is likely to be due to the biofilm creating a protective barrier that prevents antibiotics from accessing the live pathogens buried in the biofilm. S. aureus biofilms consist of an extracellular matrix comprising, but not limited to, extracellular bacterial DNA (eDNA) and poly-ß-1, 6-N-acetyl-d-glucosamine (PNAG). Our study revealed that despite inferiority of dispersin B (an enzyme that degrades PNAG) to DNase I that cleaves eDNA, in dispersing the biofilm of S. aureus, both enzymes were equally efficient in enhancing the antibacterial efficiency of tobramycin, a relatively narrow-spectrum antibiotic against infections caused by gram-positive and gram-negative pathogens, including S. aureus, used in this investigation. However, a combination of these two biofilm-degrading enzymes was found to be significantly less effective in enhancing the antimicrobial efficacy of tobramycin than the individual application of the enzymes. These findings indicate that combinations of different biofilm-degrading enzymes may compromise the antimicrobial efficacy of antibiotics and need to be carefully assessed in vitro before being used for treating medical devices or in pharmaceutical formulations for use in the treatment of chronic ear or respiratory infections

    Regulation of tight junction permeability by intestinal bacteria and dietary components

    No full text
    The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein structures comprised of transmembrane proteins, which interact with the actin cytoskeleton via plaque proteins. Signaling pathways involved in the assembly, disassembly, and maintenance of TJ are controlled by a number of signaling molecules, such as protein kinase C, mitogen-activated protein kinases, myosin light chain kinase, and Rho GTPases. The intestinal barrier is a complex environment exposed to many dietary components and many commensal bacteria. Studies have shown that the intestinal bacteria target various intracellular pathways, change the expression and distribution of TJ proteins, and thereby regulate intestinal barrier function. The presence of some commensal and probiotic strains leads to an increase in TJ proteins at the cell boundaries and in some cases prevents or reverses the adverse effects of pathogens. Various dietary components are also known to regulate epithelial permeability by modifying expression and localization of TJ proteins. © 2011 American Society for Nutrition

    Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection

    No full text
    Apple is host to a wide range of pests and diseases, with several of these, such as apple scab, powdery mildew and woolly apple aphid, being major causes of damage in most areas around the world. Resistance breeding is an effective way of controlling pests and diseases, provided that the resistance is durable. As the gene pyramiding strategy for increasing durability requires a sufficient supply of resistance genes with different modes of action, the identification and mapping of new resistance genes is an ongoing process in breeding. In this paper, we describe the mapping of an apple scab, a powdery mildew and a woolly apple aphid gene from progeny of open-pollinated mildew immune selection. The scab resistance gene Rvi16 was identified in progeny 93.051 G07-098 and mapped to linkage group 3 of apple. The mildew and woolly aphid genes were identified in accession 93.051 G02-054. The woolly aphid resistance gene Er4 mapped to linkage group 7 to a region close to where previously the genes Sd1 and Sd2, for resistance to the rosy apple leaf-curling aphid, had been mapped. The mildew resistance gene Pl-m mapped to the same region on linkage group 11 where Pl2 had been mapped previously. Flanking markers useful for marker-assisted selection have been identified for each gene. © 2010 Springer-Verlag

    Immune Balance: The Development of the Idea and Its Applications

    No full text
    corecore