51 research outputs found
Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations
A time-domain harmonic balance method for the analysis of almost-periodic (multi-harmonics) flows is presented. This method relies on Fourier analysis to derive an efficient alternative to classical time marching schemes for such flows. It has recently received significant attention, especially in the turbomachinery field where the flow spectrum is essentially a combination of the blade passing frequencies. Up to now, harmonic balance methods have used a uniform time sampling of the period of interest, but in the case of several frequencies, non-necessarily multiple of each other, harmonic balance methods can face stability issues due to a bad condition number of the Fourier operator. Two algorithms are derived to find a non-uniform time sampling in order to minimize this condition number. Their behavior is studied on a wide range of frequencies, and a model problem of a 1D flow with pulsating outlet pressure, which enables to prove their efficiency. Finally, the flow in a multi-stage axial compressor is analyzed with different frequency sets. It demonstrates the stability and robustness of the present non-uniform harmonic balance method regardless of the frequency set
Quelle théorie du capitalisme pour quelle théorie de la reconnaissance ?
Dans cet article, nous défendons la nécessité d’articuler les luttes pour la reconnaissance aux luttes pour l’appropriation. Nous effectuons d’abord un retour sur le déficit socioéconomique de la Théorie critique du capitalisme. Puis, nous tentons d’arrimer la problématique de la reconnaissance à une critique sociohistorique du capitalisme. Nous présentons comment Marx avait lié les questions du capitalisme, de l’accumulation et de la reconnaissance. Enfin, nous exposons des développements au sein du marxisme occidental qui nous paraissent plus aptes à développer les enjeux soulevés par la problématique de la reconnaissance dans le capitalisme avancé.In this paper, we argue in favour of embedding struggles for recognition in struggles for appropriation. In the first section, we highlight the socio-economic antinomies of the Frankfurt’s School critique of capitalism. Then, through a presentation of Marx, we seek to anchor struggles for recognition in a socio-historical critique of capitalism. Lastly, we seek to present promising theoretical developments within Western Marxism to address the issue of recognition in advanced capitalism
Time-domain harmonic balance method for aerodynamic and aeroelastic simulations of turbomachinery flows
A time-domain Harmonic Balance method is applied to simulate the blade row interactions and vibrations of state- of-the-art industrial turbomachinery configurations. The present harmonic balance approach is a time-integration scheme that turns a periodic or almost-periodic flow problem into the coupled resolution of several steady computations at different time samples of the period of interest. The coupling is performed by a spectral time-derivative operator that appears as a source term of all the steady problems. These are converged simultaneously making the method parallel in time. In this paper, a non-uniform time sampling is used to improve the robustness and accuracy regardless of the considered frequency set. Blade row interactions are studied within a 3.5-stage high-pressure axial compressor representative of the high-pressure core of modern turbofan engines. Comparisons with reference time-accurate computations show that four frequencies allow a fair match of the compressor performance, with a reduction of the computational time up to a factor 30. Finally, an aeroelastic study is performed for a counter-rotating fan stage, where the rear blade is submitted to a prescribed harmonic vibration along its first torsion mode. The aerodynamic damping is analysed, showing possible flutter
A Time-Domain Harmonic Balance Method for Rotor/Stator Interactions
In the absence of instabilities, the large deterministic scales of turbomachinery flows resulting from the periodic rotation of blades can be considered periodic in time. Such flows are not simulated with enough efficiency when using classical unsteady techniques as a transient regime must be bypassed. New techniques, dedicated to time-periodic flows and based on Fourier analysis, have been developed recently. Among these, harmonic balance methods cast a time-periodic flow computation in several coupled steady flow computations. A time-domain harmonic balance method is derived and adapted to phase lag periodic conditions to allow the simulation of only one blade passage per row regardless of row blade counts. Sophisticated space and time interpolations are involved and detailed. The test case is a single stage subsonic compressor. A convergence study of the present harmonic balance is performed and compared with a reference well-resolved classical unsteady flow simulation. The results show, on one hand, the good behavior of the harmonic balance and its ability to correctly predict global quantities as well as local flow pattern; on the other hand, the simulation time is drastically reduced
Convergence of Fourier-based time methods for turbomachinery wake passing problems
The convergence of Fourier-based time methods applied to turbomachinery flows is assessed. The focus is on the harmonic balance method, which is a time-domain Fourier-based approach standing as an efficient alternative to classical time marching schemes for periodic flows. In the literature, no consensus exists concerning the number of harmonics needed to achieve convergence for turbomachinery stage configurations. In this paper it is shown that the convergence of Fourier-based methods is closely related to the impulsive nature of the flow solution, which in turbomachines is essentially governed by the characteristics of the passing wakes between adjacent rows. As a result of the proposed analysis, a priori estimates are provided for the minimum number of harmonics required to accurately compute a given turbomachinery configuration. Their application to several contra-rotating open-rotor configurations is assessed, demonstrating the practical interest of the proposed methodology
Time-Domain Harmonic Balance Method for Turbomachinery Aeroelasticity
The present paper investigates a time-domain harmonic balance method as an alternative to classical time-marching schemes for stability studies of turbomachineries toward flutter. A weak-coupling approach is applied, which requires computing the fluid response to prescribed harmonic motions of the structure. The harmonic balance method, formulated in the arbitrary Lagrangian/Eulerian framework, is adapted to single-passage reduction using phase-lag boundary conditions expressed purely in the time domain. Validation against experimental data for the 11th standard configuration for aeroelasticity is performed, showing good agreement. Finally, an industrial test case is presented: a fan designed by Safran Snecma. The results show the good accuracy of the proposed harmonic balance method as well as significant reductions in computational time
Contrasting the Harmonic Balance and Linearized Methods for Oscillating-Flap Simulations
In the framework of unsteady aerodynamics, forced-harmonic-motion simulations can be used to compute unsteady loads. In this context, the present paper assesses two alternatives to the unsteady Reynolds-averaged Navier–Stokes approach, the linearized unsteady Reynolds-averaged Navier–Stokes equations method, and the harmonic balance approach. The test case is a NACA 64A006 airfoil with an oscillating ␣ap mounted at 75% of the chord. Emphasis is put on examining the performances of the methods in terms of accuracy and computational cost over a range of physical conditions. It is found that, for a subsonic ␣ow, the linearized unsteady Reynolds-averaged Navier–Stokes method is the most ef␣cient one. In the transonic regime, the linearized unsteady Reynolds-averaged Navier–Stokes method remains the fastest approach, but with limited accuracy around shocks, whereas a one- harmonic harmonic balance solution is in closer agreement with the unsteady Reynolds-averaged Navier–Stokes solution. In the case of separation in the transonic regime, the linearized unsteady Reynolds-averaged Navier–Stokes method fails to converge, whereas the harmonic balance remains robust and accurate
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Cubulations de variétés hyperboliques compactes
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée.This thesis contributes to the study of geometric actions of word-hyperbolic groups on finite dimensional CAT(0) cube complexes. We are mainly interested in the case of fundamental groups of closed hyperbolic manifolds. The philosophy coming from pioneer work of M. Sageev is that a hyperbolic group with sufficiently many quasi-convex codimension one subgroups acts geometrically on a finite dimensional CAT(0) cube complex. We prove a precise criterion for cubulation in the case of closed hyperbolic manifolds, by constructing spaces with walls quasi-isometric to real hyperbolic space. We next focus on the case of three dimensional closed hyperbolic manifolds which are virtually fibered over the circle. In this setting, we use a construction of incompressibly immersed cut-and-cross-join surfaces due to D. Cooper, D. Long and A. Reid that yields surface subgroups of the fundamental group G of the 3-manifold M. By expanding on work of J. Masters and using the structure of the Cannon-Thurston map, we are able to build many quasi-convex surface subgroups of G whose limits sets may be used to separate any pair of distinct points in the boundary of the universal cover of M. As a consequence, G acts geometrically on a finite dimensional CAT(0) cube complex. D. Wise then asks if it is possible that G acts both geometrically and virtually co-specially (in the sense of F. Haglund and D. Wise) on a CAT(0) cube complex. A positive answer would solve the long-standing conjectures that G is large and M has infinite virtual first Betti number. We then explain why finding a virtually embedded cut-and-cross-join surface in a finite cover of M would be enough to solve this problem. Finally, we give some algebraic and then geometric and cohomological sufficient conditions for a given cut-and-cross-join surface to virtually embed.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
- …