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The present paper investigates a time-domain harmonic balance method as an alternative to classical time-

marching schemes for stability studies of turbomachineries toward flutter. A weak-coupling approach is applied,

which requires computing the fluid response to prescribed harmonicmotions of the structure. The harmonic balance

method, formulated in the arbitrary Lagrangian/Eulerian framework, is adapted to single-passage reduction using

phase-lag boundary conditions expressed purely in the time domain. Validation against experimental data for the

11th standard configuration for aeroelasticity is performed, showing good agreement. Finally, an industrial test case

is presented: a fan designed by Safran Snecma. The results show the good accuracy of the proposed harmonic balance

method as well as significant reductions in computational time.

Nomenclature

B = number of blades
c = blade chord
dm = harmonic balance source term coefficient
D = mode diagonal matrix, Dk;k equals k
DA, KA, FA = aerodynamic damping, stiffness, and force

matrices
DG, KG = gyroscopic damping and centrifugal stiffness

matrices
Dt = harmonic balance time-derivative operator
E = discrete Fourier transform matrix
f, fc = frequency, f equals 1∕T; reduced frequency,

fc equals πcf∕U
k = mode number, k ∈ �−N;N	
M = interblade phase angle modulation matrix,

Mk;k equals eikβ

M, D, K = modal mass, damping, and stiffness matrices
N = number of harmonics
nd = nodal diameter
p = Laplace variable
q = generalized coordinates
R = residuals operator
s�sD� = mesh (deformation) speed
t, T, t� = time, time period, pseudotime
U = fluid velocity
V = cell volume
W = fluid conservative variables

X = mesh coordinates
�x; r; θ� = cylindrical coordinates
y� = dimensionless wall distance
α = aerodynamic damping
β = interblade phase angle, β equals 2πnd∕B
Φ = structure modal basis
ω = angular frequency, ω equals 2π∕T
_• = time derivative of •
•̂k = kth Fourier coefficient
•n = nth time instant, tn identical to nT∕�2N � 1�
•
� = concatenation, •� equals �•0; : : : ; •2N�

⊤

I. Introduction

W ITH the trend to reduce weight and increase stage loading of
aeroengine components, flutter predictions have become a

crucial part of turbomachinery design. On one hand, preliminary
design methods [1] can be used early in the conception process with
reasonable accuracy.On the other hand, direct aeroelastic simulations
are the best way to predict flutter [2] but are still too expensive in
terms of computational cost for routine design investigations. A
practical method is the so-called weak-coupling approach in which a
computational fluid dynamics solver is used to predict the aero-
dynamic response of blades vibrating in a periodic prescribedmotion
according to a given structural mode previously computed by a
computational structural mechanics solver. A stability analysis can
then be performed in the frequency domain.
A reference approach for the calculation of unsteady flows is

the resolution of the unsteady Reynolds-averaged Navier–Stokes
(URANS) equations with a classical time-marching scheme such as
the dual time stepping (DTS) method [3]. Alternatively, efficient
Fourier-based methods for periodic flows have undergone major
developments [4]. The basic principle is to decompose the time-
dependent flow variables into Fourier series to make a time-domain
problem equivalent to a frequency-domain problem, in which the
complex Fourier coefficients are the new unknowns. Two strategies
have been proposed to obtain the solution. The first one is to directly
solve for the Fourier coefficients, using a dedicated frequency-
domain solver, as proposed by He and Ning [5,6], yielding the
nonlinear harmonic method [7]. The second strategy is to cast the
problem back to the time domain using the inverse Fourier transform,
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as proposed by Hall et al. [8], Gopinath and Jameson [9], and Ekici
et al. [10] with the harmonic balance (HB) method. The unsteady
time-marching problem is thus transformed into a set of steady
problems coupled by a spectral time-derivative operator. The main
advantage of solving in the time domain is that it can be implemented
in an existing classical Reynolds-averaged Navier–Stokes (RANS)
solver, taking advantage of all classical convergence-accelerating
techniques for steady-state problems. The HB method thus directly
converges to the periodic state and avoids time-consuming unsteady
transients. The present implementation was developed in the elsA
[11] code by Sicot et al. [12] and extended to an arbitrary Lagrangian/
Eulerian (ALE) formulation by Dufour et al. [13] to perform a weak
fluid–structure coupling simulation for external flows. The HB
method has been extensively applied and validated for external flows
[14–17], considering both aerodynamics and aeroelasticity. How-
ever, when it comes to turbomachinery aeroelasticity, validation
against experimental data remains an open issue [18–23].
Turbomachinery simulations are seldom performed on the

whole circumference of the annulus due to the high computa-
tional cost. Cyclic periodicity is assumed, both for structure and
fluid, which allows to solve for only one blade passage and thus
drastically reduces the computational domain. In this case, the blades
do not necessarily vibrate in phase, and an interblade phase angle
(IBPA) can be prescribed according to a so-called nodal diameter. The
phase-lag periodic condition (see [24] for the URANS approach)
must then be applied on the azimuthal boundaries of the blade
passage. However, it tends to increase the transient behavior needed
by classical time-marching algorithms to reach the periodic state (see,
for instance, [25]), which prompts for the use of an alternativemethod
such as the HB technique. The first specific contribution of the
present article is to apply the phase-lagged boundary conditions
purely in the time domain (as described in [26] for rotor/stator
interactions), as opposed to the mixed treatment in the Fourier space
reported in the literature [8,27]. The advantage of this approach is that
it is efficient, and easier to implement, because the phase-shifted flow
solutions are computed analytically as a combination of all the
computed snapshots, which are readily available in a time-domain
harmonic approach.
The present study aims at validating the HBmethod for the predic-

tion of aerodynamic loads on vibrating blades and at demonstrating
its capability for a typical industrial application. First, the
fluid/structure interaction in a weak-coupling approach is presented,
with an emphasis on single-passage reduction. Second, the classical
DTS technique and the HB method are presented and adapted to
moving grids and single-passage reduction. Then, the 11th standard
configuration [28] is investigated to validate the proposed approach.
To the authors’ knowledge, this is the first published article on
the validation of HB results against aeroelastic experimental
data in turbomachines. (Although since the present paper was
submitted, the paper [29] was published.) Finally, because most
contributions on the topic of HB simulations for turbomachinery
aeroelasticity consider two-dimensional and/or inviscid test cases, a
complex industrial fan designed by Snecma is considered. This
application case includes a three-dimensional geometry with tip
clearance and is treated with a RANS approach in order to
demonstrate the robustness and the maturity of the harmonic balance
method.

II. Fluid/Structure Interaction

A. Weak-Coupling Approach

The weak-coupling approach [2] is a one-way coupling from
structure to fluid. First, a modal identification of the structure is
carried out. Then, the fluid response to the harmonic prescribed
motion of the structure modes is simulated, in which the harmonic
motion of the geometry is ensured by a mesh deformation technique,
based on a structural analogy method implementing linear elastic
elements. Finally, knowing the unsteady pressure load, a stability
study can be performed in the frequency domain.

B. Linear Modal Structure Model

1. Governing Equations

Once the modal basis Φ is identified, either by mean of a finite
element model or an experimental identification, the equation of
structure dynamics under aerodynamic load FA reads

M $q�D _q�Kq −Φ
⊤FA�t� � 0; x � Φq (1)

Theweak-coupling approach assumes the linearity of the response of
the fluid with respect to the displacement of the structure. Therefore,
small displacements are assumed, and the so-called generalized
aerodynamic forces are linearized, which adds aerodynamic stiffness
KA and damping DA:

Φ
⊤FA�t� � DA _q� KAq (2)

To estimate the unsteady aerodynamic forces FA�t�, a fluid
simulation is run with a prescribed harmonic motion of the structure:

q�t� � cos�ωt� (3)

A stability analysis is then performed in the frequency domain:

q � q̂ept ⇒ �p2M� p�D −DA� � �K − KA��q̂ � 0 (4)

where the Laplace variable p is of the form p � iω�1� iα�. Finally,
considering only weakly damped or amplified modes (i.e., jαj ≪ 1),
the damping of the fluid/structure coupled system reads
α � −Re�p�∕Im�p�.

2. Single-Passage Reduction for Turbomachinery Computations

As the blade row is rotating, the stiffness of the blades is increased,
and gyroscopic terms are added. Eq. (1) becomes

M $q� �D�DG� _q� �K � KG�q −Φ
⊤FA�t� � 0; x � Φq

(5)

whereDG is the skew-symmetric gyroscopic dampingmatrix andKG

is the gyroscopic matrix of deflection for inclusion of centrifugal
elements for instance. The disk being flexible, the blades do not
vibrate independently of each other. The cyclic symmetry leads to
complex vibration modes, which can be seen as rotating waves
traveling at an integer multiple nd of the rotation speed [30]. nd is
called a nodal diameter. Opposite nodal diameters have the same
vibration mode propagating in opposite directions. Therefore, their
respective modes are complex conjugate.

C. Nonlinear Aerodynamic Model

1. Governing Equations

The URANS equations are written in finite-volume semidiscrete
form with ALE formulation as

∂�VW�

∂t
� R�W; s� � 0 (6)

W is the vector of conservative variables complemented with an
arbitrary number of turbulent variables as within the RANS
framework. The residuals R�W; s� result from the spatial discretiza-
tion of the convective and viscous fluxes in ameshmoving at speed s,
the sum of the entrainment velocity and the deformation velocity sD.
Detailed formulation of the governing equations can be found in [13]
for instance.

2. Single-Passage Reduction

To reduce the computational domain, Cinnella et al. [31]
considered an annular sector of 360 deg · z∕IBPA of the annulus to
have no lag at the azimuthal boundaries, where z is the minimum
integer that leads to an integer number of blade passages. As a result,
the size of the domain changes when considering different IBPAs,



up to the full annulus (for nd � 1, for instance), which is not
computationally efficient.
A more general approach is the phase-lag periodic condition [24],

which allows to solve only one blade passage per row if nomistuning
is involved, reducing dramatically the computational domain. It
states that the flow in a blade passage at time t is the flow at the next
passage but at another time t� β∕ω. This time lag corresponds to the
phase of a rotating wave, i.e., an IBPA, depending on the nodal
diameter: β � 2πnd∕B. As a property of the Fourier transform, the
spectrumof the flow is then equal to the spectrumof the neighbor blade
passage modulated by a complex exponential depending on the IBPA:

W

�

x; r; θ�
2π

B
; t

�

� W

�

x; r; θ; t�
β

ω

�

(7)

is equivalent to

Ŵk

�

x; r; θ�
2π

B

�

� Ŵk�x; r; θ�e
ikβ; ∀ k ∈ Z (8)

The IBPA is associated to one frequency: the vibration frequency. This
phase-lag method cannot take into account another IBPA, such as the
one associated to the blade passing frequency of a neighbor row. As a
consequence, the single-passage reduction is limited to an isolated row.

III. Time-Integration Schemes

A. Dual Time Stepping Method

The DTS method [3] is a second-order implicit time-marching
scheme. A pseudotime t� derivative is added to Eq. (6) in order to
solve the induced nonlinear system at each time step:

V
∂W

∂t�
�

∂�VW�

∂t
� R�W; s� � 0 (9)

The inner iterations are equivalent to solve a steady problem, which
cancels out the pseudotime derivative, and Eq. (6) is retrieved. The
inner steady problem can benefit from convergence-acceleration
techniques such as the multigrid technique [32] and local time
stepping. One needs to find a tradeoff between the physical time step
and the number of subiterations (i.e., the convergence of the inner
loop), but theDTSmethod usually allows higher time steps compared
to explicit schemes and thus reduces the computational cost.
The harmonic motion of the geometry is ensured by a mesh

deformation technique, based on a structural analogy method
implementing linear elastic elements. The deformation speed sD is
estimated thanks to a first-order finite-difference scheme between
the mesh points at previous and current instants: sD�tn� �
�Xn − Xn−1�∕Δt.
The phase-lag periodic condition is achieved thanks to a sliding

Fourier decomposition as inspired by the shape correction method
presented by He [33]. A phase-lag computation is usually initialized
by a steady-state simulation with azimuthal rotation periodicity.
Therefore, it requiresmore simulated time periods to trigger the phase
lag and reach the periodic state than a regular rotation-periodicity
simulation (e.g., a periodic sector as in [31] or when all blades vibrate
in phase). The available literature [2,25] suggests that the simulation
time needed to reach the periodic state is three times more important
with phase-lag periodicity that with rotation periodicity. The DTS
computation, if sufficiently sampled, is considered as the reference
unsteady solution.

B. Harmonic Balance Method

1. Fourier-Based Time-Derivative Operator

If both the flow variablesW and cell volumeV are periodic in time
with period T � 2π∕ω, so are the residuals R�W; s�, and the Fourier
series of Eq. (6) reads

X∞

k�−∞

�ikωdVWk � bRk� exp�ikωt� � 0 (10)

The complex exponential family forming an orthogonal basis, the
only way for Eq. (10) to be true is that the weight of every mode k is
zero. An infinite number of steady equations are obtained in the
frequency domain:

ikωdVWk � bRk � 0; ∀ k ∈ Z (11)

McMullen et al. [34] solved a subset of these equations up to mode
N, −N ≤ k ≤ N, yielding the nonlinear frequency domain method.
As the present HB method has to be implemented in the elsA code
[11], which is a time-domain solver, these equations cannot be easily
solved. The harmonic balance method [8] and the time spectral
method [9] use an inverse discrete Fourier transform (IDFT) to cast
back this subset of 2N � 1 equations into the time domain. The IDFT
induces linear relations between the Fourier’s coefficients Ŵk and a
uniform sampling of W within the period. Finally, the following
matrix formulation is retrieved:

iωE−1DE�VW�� � R� � 0 (12)

where �VW�� is a vector of a uniform sampling of the flow variables

W� � �V0W0; : : : ; VnWn; : : : ; V2NW2N 	;

Wn � W

�

2π

ω

n

2N � 1

�

(13)

E is the discrete Fourier transform matrix:

En;k �
1

2N � 1
exp�−iωktn� �

1

2N � 1
exp

�

−2iπk
n

2N � 1

�

(14)

and Dk;k � k; k ∈ �−N;N	. Gopinath and Jameson [9] provide an
analytical derivation of the source term iωE−1DE appearing in
Eq. (12). This leads to a time discretization with a new time operator
Dt as follows:

R�Wn; sn� �Dt�VnWn� � 0; 0 ≤ n < 2N � 1 (15)

These steady equations correspond to 2N � 1 instants tn evenly
spacedwithin the period, such that tn � nT∕�2N � 1�. The new time
operator connects all the time levels and is expressed analytically by

Dt��VW��� � iωE−1DE�VW�� ⇔ Dt�VnWn�

�
XN

m�−N

dmVn�mWn�m (16)

with

dm �
π

T

�−1�m�1

sin�πm∕2N � 1�
if m ≠ 0 and d0 � 0 (17)

A pseudotime derivative Vn∂Wn∕∂t
�
n is added to Eq. (15) in order to

time march these equations to the steady-state solutions of all the
instants. The termDt�VnWn� appears as a source term that represents
a high-order formulation of the initial time derivative in Eq. (6).
Figure 1 shows the different states of the HB instants during the
iteration process. Usually, all instants are initialized by the same
initial condition (Fig. 1a). Then, at each pseudotime iteration, the HB
time derivativeDt [Eq. (16)] is added as a source term. It is different
from one instant to another because the deformed meshes are
different and thus allow the instants to differentiate (Fig. 1b). In the
end, once the steady convergence is reached, all the instants have
converged toward the periodic flow (Fig. 1c).



The pseudotime marching takes advantage of the same accel-
erating methods used in the inner loops of the DTS method. The
implicit scheme is carried out by the Block-Jacobi Successive-over-
relaxation implicit algorithm [12] developed to improve robustness.

2. Adaptation to the Arbitrary Lagrangian/Eulerian Formulation

The deformation speed sD is estimated by applying the HB time-
derivative operator to the mesh points at all instants: s�D � Dt�X

��.
This decomposition is exact when the deformation of the mesh has
less harmonics than those solved in the HB computation [13]. In the
present case, themesh deformation follows a purely single-frequency
law [see Eq. (3)]; therefore, all the HB computations will correctly
estimate the mesh deformation speed regardless of their harmonic
content.

3. Adaptation to Turbomachinery Single-Passage Reduction

The phase-lag periodic condition can be derived by applying an
IDFT on the phase-shifted harmonics Ŵke

ikβ of Eq. (8). A linear
combination of all the time instants is obtained:

W�

�

θ� ϕ
2π

B

�

� E−1MEW��θ�; ϕ � �1 (18)

where M is a diagonal matrix equal to the IBPA modulation
Mk;k � eikβ. It can be derived analytically in the same way as the
source term Eqs. (16) and (17):

W

�

x; r; θ� ϕ
2π

B
; tn

�

�
XN

m�−N

bmW�x; r; θ; tn�m� (19)

with

bm �
1

2N � 1

�

1 � 2
XN

k�1

cos

�

k

�

2π
m

2N � 1
− ϕβ

���

;

ϕ � �1 (20)

As the HB method solves and stores simultaneously a uniform
sampling of the time period, it could be considered similar to Erdos’

direct store method. Actually, the method used here is closer to the
shape correction [33], in a sense that the lag is computed thanks to
Fourier series.

IV. Numerical Applications

For external-flow aeroelasticity, the HB approach has been
thoroughly validated [9,12,13,16], mostly for the AGARD test cases
of Davis [35]. However, experimental data for turbomachinery
aeroelasticity aremore scarce; the standard aeroelastic configurations
experiments of Fransson et al. [28] are the reference in this respect
and have beenwidely used to validate different numerical approaches
[31,36–39]. However, this is the first time these results are used to
validate HB simulations. The presented applications are in increasing
complexity. The first test case is a turbine stator Standard
Configuration (STCF 11), for which experimental results are
available at both subsonic and transonic conditions. The second test
case is an industrial fan configuration, proving the robustness of the
method for industrial requirements.

A. 11th Standard Configuration

The 11th standard configuration is a turbine stator composed of 20
blades and tested at École Polytechnique Fédérale-Lausanne in the
late 1990s by Fransson et al. [28]. The experimental results have been
found to be highly reproducible and therefore suitable for code
validation [28].
The geometry profile and the results are available over the

internet¶. To allow local validation of the steady flow, the isentropic
Mach number is given at the blade wall.
The blades oscillate harmonically in the first bending mode in an

annular test rig at a reduced frequency of fc � πcf∕Uoutlet;exp �
0.2134 for the subsonic case and 0.1549 for the transonic case.
Aeroelastic results are available, such as the first harmonic of the
unsteady pressure coefficient at blade walls (amplitude and phase),
for several nodal diameters. The integrated results, such as the
damping, strongly vary under small changes in the local distribution.
It is therefore recommended to look at the local distributions.
The blade passage is meshed using an O4H topology (Fig. 2). The

number of grid points along the blade chord axis is 160, and the
computed y� at the walls is O�1�. The blade has the same profile
along the spanwise direction and no twist. Therefore, a 2.5-
dimensional mesh is usedwith five points in the radial direction, with
a spanwise extent representing 1% of the chord.
The boundary conditions used for this case include 1) an injection

condition for the inlet (with a relative flow angle set to the
experimental value), 2) a constant static pressure condition for the
outlet, 3) an adiabatic no-slip condition on blade walls, and
4) periodic or phase-lagged conditions for azimuthal boundaries
depending on the prescribed IBPA. Turbulence is modeled using the
one-equation model of Spalart–Allmaras [40]. The third-order
upwind Roe scheme [41] is used to compute the convective fluxes.
The maximum Courant–Friedrichs–Lewy condition number is set to
20 for the steady computations, the inner loop of the DTS scheme,
and the HB simulations. For the DTS scheme, convergence in time
discretization is obtained after 20 periods using 128 instants per

a) Initial condition b) Intermediate state c) Final state

Fig. 1 HB method iteration chart.

Fig. 2 STCF 11 mesh.

¶Data available online at http://www.energy.kth.se/proj/projects/Markus%
20Joecker/STCF/STCF11/stcf11.htm [retrieved 7 August 2013].



period. Iterative convergence for the inner loop is considered
achieved when the normalized residuals drop by 5 × 10−2 (within a
maximum of 50 subiterations).

1. Subsonic Case

The measured inlet Mach number is 0.31 and the isentropic outlet
Mach number is 0.69. Steady results for the isentropic Mach number
at bladewalls are compared to the experimental data in Fig. 3. For this
flow regime, the flow remains subsonic. On the pressure side, the
flow accelerates all the way to the trailing edge of the blade. On the
suction side, the flow accelerates until a maximum speed at≈40% of
the chord and then decelerates (Fig. 4). The agreement with the

experimental data is fair. However, an overprediction of the isentropic
Mach number is observed on the suction side. This discrepancy is
also reported in the literature (see [28], for instance).
The aeroelastic experimental data are compared to the present

results obtained with both the DTS and the HB approaches. To
explore the range of nodal diameters with the HB method, an incre-
mental approach is used in which each nodal diameter simulation is
used to initialize the next one. Considering the opposite phase
vibration case (the 10th nodal diameter), the amplitude and the phase
of the pressure coefficient are presented in Fig. 5. With only one
harmonic (i.e., three instants), theHB results are superimposed on the
DTS ones.Moreover, the numerical results are in fair agreement with

Fig. 3 Steady results of the isentropic Mach number at blade walls,
subsonic case.

Fig. 4 Steady isentropic Mach number contours, subsonic case.

a) Amplitude part b) Phase part

Fig. 5 Wall pressure harmonic analysis for an opposite phase vibration, subsonic case.

a) Amplitude part b) Phase part

Fig. 6 Wall pressure harmonic analysis for nd � −2, subsonic case.



the experimental data for the amplitude. However, for the phase, the
sign change on the suction side is predicted at about 60%of the chord,
whereas the experimental location is about 25%.
The results for the nodal diameter −2 are shown in Fig. 6. The HB

and DTS data are superimposed and are in fair agreement with the
experiments. The amplitude levels are well captured, and the phase
prediction is slightly improved over the opposite phase case.
The damping obtained from the previous calculations is depicted

in Fig. 7. Also plotted are the results from Fransson et al. [28],
obtained with both potential, linear Euler, nonlinear Euler, and
nonlinear viscous codes. The results for all IBPAs are given for the
potential code, but only β � 180 deg is provided for the other codes
[28]. These are the only damping results for the subsonic case known
by the authors. Because the local variations are superimposed for the

DTS and the HB approaches, so are the damping. The present results
show similar trends and levels to those of Fransson et al.

2. Transonic Condition

The outlet isentropic Mach number is 0.99 for an inlet Mach
number of 0.4. This case, for which experimental uncertainties are
available, has been largely addressed in the literature (see, for
instance, [31,36–38]). This test case is challenging in terms of
nonlinearities as a separation bubble and a shock are present.
Steady results of the isentropic Mach number are shown in Fig. 8.

For this flow regime, a small separation bubble develops on the
suction side at the leading edge (cf. Fig. 9). The flow then accelerates,
followed by a passage shock. The experimental data suggest that the
shock appears sooner on the suction side than in the computations; all
the results reported in the literature exhibit similar discrepancies (see
[28,31,36–38]). Otherwise, the present results are in fair agreement
with experimental data.
The aeroelastic experimental data are compared to the present

results obtained with both the DTS and the HB approaches. Con-
sidering the opposite phase vibration case (the 10th nodal diameter),
the amplitude and the phase of the pressure coefficient are presented
in Fig. 10. Also plotted are the results of Cinnella et al. [31], com-
puted with a nonlinear viscous approach using the Spalart–Allmaras
turbulence model. The present HB and the DTS results are super-
imposed, which indicates that the one harmonic HB solution is able
to reproduce the unsteady nonlinear effects without increasing
the number of harmonics. This observation is only valid near thewall,
before the harmonics are created naturally by the flow, due to the
nonlinear effects. The results are in good agreement with the
experimental data and display the same trends as that of Cinnella et al.
A slight discrepancy can be observed within the shock region, in
which the amplitude and the phase phenomena are predicted further

Fig. 7 Aerodynamic damping coefficient versus IBPA, subsonic case.

Fig. 8 Steady results of the isentropic Mach number at blade wall,
transonic case.

Fig. 9 Steady isentropic Mach number contours, transonic case.

a) Amplitude part b) Phase part

Fig. 10 Wall pressure harmonic analysis for an opposite phase vibration, transonic case.



than the experiments indicate. This can be attributed to the poor
prediction of the shock position and hence the poor prediction of its
interaction with the motion of the blade.
The results for the nodal diameter −2 are also shown in Fig. 11.

Again, the HB results are superimposed on the DTS ones. Moreover,
these are in good agreement with the experiments, considering the
uncertainties of the experimental data.
The damping is shown in Fig. 12 for the transonic case. Also

plotted are the results from Fransson et al. (potential code) [28] and
fromCinnella et al. (RANS) [31]. The scattering ismuchmore severe
than for the subsonic case. The trends obtained with the RANS

approaches are similar. However, the discrepancies between the two
RANS codes are significant in terms of levels. Recently, Vogt and
Fransson [42] reported similar discrepancies for damping predictions
of subsonic and transonic cascades, showing that the damping can be
significantly affected by small local changes in the amplitude and/or
the phase. In terms of computational efficiency, the HB method is
seven times faster than the DTS for all the IBPAs.

B. Safran Snecma Fan

The third test case is a transonic fan designed by Safran Snecma.
Because of confidentiality reasons, the authors cannot show all nodal

a) Amplitude part b) Phase part

Fig. 11 Wall pressure harmonic analysis for nd � −2, transonic case.

Fig. 12 Aerodynamic damping coefficient versus IBPA, transonic case.
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Fig. 13 Fan mesh (for a better readability, the mesh is coarsened by a
factor 2 in every direction).
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Fig. 15 HB residuals convergence (three instants, nd � 1).



diameters and have to normalize the aerodynamic damping. The
Reynolds number based on tip speed is about 14 × 106. The motion
simulated is the first bending mode, at a reduced frequency
fc � πcf∕U � 0.26, for an amplitude small enough to bewithin the
linear domain. The low-Reynolds mesh is shown Fig. 13 and
comprises about 800,000 cells. The instantaneous Mach contours
(Fig. 14) present strong shocks that spread over the blade passage.
The numerical parameters stem from industrial best practices.

Turbulence is modeled by the one-equation model of Spalart–
Allmaras [40]. The spatial scheme of Jameson et al. [43] is used. The
DTS computation is performed on 30 periods with 64 instants per
period. The subiterations are considered as converged when the
normalized residual have dropped by 5 × 10−2 with amaximumof 20
subiterations. The time step and the number of periods simulated to

reach the periodic state have been verified to yield a time-converged
solution. All the steady problems (HB andDTS subiterations) benefit
from local time stepping and a multigrid cycle with one coarse level.
Twooperating points are studied: the nominal point and a near-stall

point. The convergence of the HB method with three instants is
shown in Fig. 15. Although the nominal point requires less than 1000
iterations to converge, the near-stall point is still converging after
1500 iterations. This was expected as near-stall operating point are
usually numerically “stiffer.” Nevertheless, the normalized damping
(Fig. 16) converges faster than the residuals as about 300 iterations
are sufficient for the nominal case and 1000 for the near-stall case.
The results match the DTS damping quite well.
The aerodynamic damping is given in Fig. 17 for some diameters

around the critical diameter (i.e., the diameter with the lowest
damping). All diameters give a positive damping, for both operating

Fig. 16 Comparison of damping convergence (nd � 1).

Fig. 17 Normalized fan aerodynamic damping.
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points,which clears this fan for flutter problems. The critical diameter
is the same for both operating points and both time-integration
schemes. TheHB results are superimposed on the reference computa-
tion in the near stall case, which is surprising as it is numerically
stiffer due to detached flow regions in which the flow spectrum is
expected to be richer than theHBmethod can capture. Figure 18 gives
the harmonic analysis of thewall pressure at 90%of the blade span for
the diameter below the critical one, in which the highest gap between
DTS and HBmethods is observed (in the rectangle on Fig. 17). Both
time-integration schemes give similar results. Concerning the
nominal point, the highest discrepancies appear on the real part of the
first harmonic in the last 20%of the chord on the suction side. TheHB
method also tends to underestimate the amplitude of unsteadiness in
the first 40% of the chord of the suction side in the near-stall case.
The HB gains in computational cost compared to the DTSmethod

range from 3 to 10 times faster. It is found that the gain of the HB
approach over the DTSmethod increases with the value of the IBPA,
mostly due to the fact that the HB method takes full advantage of the
initialization with the previous IBPA computation, without any loss
in convergence rate, whereas the DTS computations converge more
slowly as the blades tend to vibrate in opposite phase.

V. Conclusions

The HB approach for aeroelastic damping calculation, derived for
periodic problems in which the period is known a priori, has been
presented. The phase-lagged boundary conditions are then purely
derived in the time domain, which is expected to be more computa-
tionally efficient and easier to implement. Finally, the proposed
method has been validated on the 11th standard configuration and
applied to an industrial case. The results show that the HB approach
provides local and global results close to the reference DTS scheme
with only three instants (one harmonic) in the time period. At the cost
of amemory increase (roughly equal to the number of instants used in
the HB simulations), the computational saving is about a factor 3 to
10, depending on the case considered, the operating point, and the
value of the IBPA. For the 11th standard configuration, the results are
in good agreement with the experimental data and with the results
found in the literature. For the fan case considered in the present
study, the critical damping is well predicted at the nominal point. In
practice, the HB method is a good candidate for fast preliminary
design investigations, which could be complemented by more
advanced studies.
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