312 research outputs found

    Shot noise limited characterization of femtosecond light pulses

    Full text link
    Probing the evolution of physical systems at the femto- or attosecond timescale with light requires accurate characterization of ultrashort optical pulses. The time profiles of such pulses are usually retrieved by methods utilizing optical nonlinearities, which require significant signal powers and operate in a limited spectral range\cite{Trebino_Review_of_Scientific_Instruments97,Walmsley_Review_09}. We present a linear self-referencing characterization technique based on time domain localization of the pulse spectral components, operated in the single-photon regime. Accurate timing of the spectral slices is achieved with standard single photon detectors, rendering the technique applicable in any spectral range from near infrared to deep UV. Using detection electronics with about 7070 ps response, we retrieve the temporal profile of a picowatt pulse train with 10\sim10 fs resolution, setting a new scale of sensitivity in ultrashort pulse characterization.Comment: Supplementary information contained in raw dat

    NIR Femtosecond Control of Resonance-Mediated Generation of Coherent Broadband UV Emission

    Full text link
    We use shaped near-infrared (NIR) pulses to control the generation of coherent broadband ultraviolet (UV) radiation in an atomic resonance-mediated (2+1) three-photon excitation. Experimental and theoretical results are presented for phase controlling the total emitted UV yield in atomic sodium (Na). Based on our confirmed understanding, we present a new simple scheme for producing shaped femtosecond pulses in the UV/VUV spectral range using the control over atomic resonance-mediated generation of third (or higher order) harmonic.Comment: 14 pages, 4 figure

    Design and applications of in-cavity pulse shaping by spectral sculpturing in mode-locked fibre lasers

    Get PDF
    We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers

    Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    Full text link
    High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonics generation. Recently, we have demonstrated the ability to resolve the first stage of the process -- field induced tunnel ionization -- by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study -- modifying the fundamental wavelength, intensity and atomic system -- we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems.Comment: 11 pages, 5 figure

    Near-threshold high-order harmonic spectroscopy with aligned molecules

    Full text link
    We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure

    Attosecond time-resolved photoelectron holography

    Get PDF
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography—all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds

    THE OUTCOMES OF THE EXPERIMENT ON INTERCULTURAL AWARENESS FORMATION OF THE WOULD-BE CULTURE EXPERTS

    Get PDF
    В статье рассматриваются результаты опытно-экспериментальной работы по формированию межкультурной компетентности студентов-будущих культурологов средствами иностранного языка. Представлен анализ средств формирования межкультурной компетентности студентов-будущих культурологов.The article considers the outcomes of the experiment on intercultural awareness formation of the would-be culture experts by foreign language means. The analysis of means of intercultural awareness formation of the would-be culture experts is described

    Interference spectroscopy with coherent anti-Stokes Raman scattering of noisy broadband pulses

    Full text link
    We propose a new technique for comparing two Raman active samples. The method employs optical interference of the signals generated via coherent anti-Stokes Raman scattering (CARS) of broadband laser pulses with noisy spectra. It does not require spectrally resolved detection, and no prior knowledge about either the Raman spectrum of the samples, or the spectrum of the incident light is needed. We study the proposed method theoretically, and demonstrate it in a proof-of-principle experiment on Toluene and ortho-Xylene samples.Comment: 15 pages, 6 figure

    Theory of selective excitation in Stimulated Raman Scattering

    Full text link
    A semiclassical model is used to investigate the possibility of selectively exciting one of two closely spaced, uncoupled Raman transitions. The duration of the intense pump pulse that creates the Raman coherence is shorter than the vibrational period of a molecule (impulsive regime of interaction). Pulse shapes are found that provide either enhancement or suppression of particular vibrational excitations.Comment: RevTeX4,10 pages, 5 figures, submitted to Phys.Rev.
    corecore