486 research outputs found

    Glitter-like iridescence within the bacteroidetes especially Cellulophaga spp.: optical properties and correlation with gliding motility.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Iridescence results from structures that generate color. Iridescence of bacterial colonies has recently been described and illustrated. The glitter-like iridescence class, created especially for a few strains of Cellulophaga lytica, exhibits an intense iridescence under direct illumination. Such color appearance effects were previously associated with other bacteria from the Bacteroidetes phylum, but without clear elucidation and illustration. To this end, we compared various bacterial strains to which the iridescent trait was attributed. All Cellulophaga species and additional Bacteroidetes strains from marine and terrestrial environments were investigated. A selection of bacteria, mostly marine in origin, were found to be iridescent. Although a common pattern of reflected wavelengths was recorded for the species investigated, optical spectroscopy and physical measurements revealed a range of different glitter-like iridescence intensity and color profiles. Importantly, gliding motility was found to be a common feature of all iridescent colonies. Dynamic analyses of "glitter" formation at the edges of C. lytica colonies showed that iridescence was correlated with layer superposition. Both gliding motility, and unknown cell-to-cell communication processes, may be required for the establishment, in time and space, of the necessary periodic structures responsible for the iridescent appearance of Bacteroidetes.PV acknowledges the support of AFOSR grant FA9550-10-1-0020. BK was a PhD student with a grant from the Ministe`re de la recherche et de l’enseignement supe´rieur. ER acknowledges the support of CNRS grant AIR75515 (‘‘Bacte´ridescence’’ project). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    N-acetylcysteine Facilitates Self-Imposed Abstinence After Escalation of Cocaine Intake.

    Get PDF
    BACKGROUND: N-acetylcysteine (NAC) has been suggested to prevent relapse to cocaine seeking. However, the psychological processes underlying its potential therapeutic benefit remain largely unknown. METHODS: We investigated the hallmark features of addiction that were influenced by chronic NAC treatment in rats given extended access to cocaine: escalation, motivation, self-imposed abstinence in the face of punishment, or propensity to relapse. For this, Sprague Dawley rats were given access either to 1 hour (short access) or 6 hours (long access [LgA]) self-administration (SA) sessions until LgA rats displayed a robust escalation. Rats then received daily saline or NAC (60 mg/kg, intraperitoneal) treatment and were tested under a progressive ratio and several consecutive sessions in which lever presses were punished by mild electric foot shocks. RESULTS: NAC increased the sensitivity to punishment in LgA rats only, thereby promoting abstinence. Following the cessation of punishment, NAC-treated LgA rats failed to recover fully their prepunishment cocaine intake levels and resumed cocaine SA at a lower rate than short access and vehicle-treated LgA rats. However, NAC altered neither the escalation of SA nor the motivation for cocaine. At the neurobiological level, NAC reversed cocaine-induced decreases in the glutamate type 1 transporter observed in both the nucleus accumbens and the dorsolateral striatum. NAC also increased the expression of Zif268 in the nucleus accumbens and dorsolateral striatum of LgA rats. CONCLUSIONS: Our results indicate that NAC contributes to the restoration of control over cocaine SA following adverse consequences, an effect associated with plasticity mechanisms in both the ventral and dorsolateral striatum.This research was supported by a French Institute of Health and Medical Research Avenir and an ANR12 SAMA00201 Grant (to DB) as well as a Newton Trust/Cambridge University Grant (to DB). BJE and JEM are supported by a Medical Research Council (G9536855, G0701500) Grant to BJE and by a joint award from the Medical Research Council and Wellcome Trust in support of the Behavioral and Clinical Neuroscience Institute at Cambridge University

    Production of medium-mass neutron-rich nuclei in reactions induced by 136Xe projectiles at 1 A GeV on a beryllium target

    Full text link
    Production cross sections of medium-mass neutron-rich nuclei obtained in the fragmentation of 136Xe projectiles at 1 A GeV have been measured with the FRagment Separator (FRS) at GSI. 125Pd was identified for the first time. The measured cross sections are compared to 238U fission yields and model calculations in order to determine the optimum reaction mechanism to extend the limits of the chart of the nuclides around the r-process waiting point at N=82.Comment: 9 pages, 6 figure

    A standardized procedure to obtain mesenchymal stem/stromal cells from minimally manipulated dental pulp and Wharton’s jelly samples

    Full text link
    Transplantation of mesenchymal stem/stromal cells (MSCs) has emerged as an effective method to treat diseased or damaged organs and tissues, and hundreds of clinical trials using MSCs are currently under way to demonstrate the validity of such a therapeutic approach. However, most MSCs used for clinical trials are prepared in research laboratories with insufficient manufacturing quality control.In particular, laboratories lack standardized procedures for in vitro isolation of MSCs from tissue samples, resulting in heterogeneous populations of cells and variable experimental and clinical results. MSCs are now referred to as Human Cellular Tissue-based Products or Advanced Therapy Medicinal Products, and guidelines from the American Code of Federal Regulation of the Food and Drug Administration (21 CFR Part 1271) and from the European Medicines Agency (European Directive 1394/2007) define requirements for appropriate production of these cells. These guidelines, commonly called “Good Manufacturing Practices” (GMP), include recommendations about laboratory cell culture procedures to ensure optimal reproducibility, efficacy and safety of the final medicinal product. In particular, the Food and Drug Administration divides ex vivo cultured cells into “minimally” and “more than minimally” manipulated samples, in function of the use or not of procedures “that might alter the biological features of the cells”. Today, minimal manipulation conditions have not been defined for the collection and isolation of MSCs (Torre et al. 2015)(Ducret et al. 2015).Most if not all culture protocols that have been reported so far are unsatisfactory, because of the use of xeno- or allogeneic cell culture media, enzymatic treatment and long-term cell amplification that are known to alter the quality of MSCs. The aim of this study was to describe a standardized procedure for recovering MSCs with minimal handling from two promising sources, the dental pulp (DP) and the Wharton’s jelly (WJ) of the umbilical cord. The quality and homogeneity of the expanded cell populations were assessed by using flow cytometry with criteria that go beyond the International Society of Cellular Therapy (ISCT) guidelines for MSC characterization

    Coincidence measurement of residues and light particles in the reaction 56Fe+p at 1 GeV per nucleon with SPALADIN

    Full text link
    The spallation of 56^{56}Fe in collisions with hydrogen at 1 A GeV has been studied in inverse kinematics with the large-aperture setup SPALADIN at GSI. Coincidences of residues with low-center-of-mass kinetic energy light particles and fragments have been measured allowing the decomposition of the total reaction cross-section into the different possible de-excitation channels. Detailed information on the evolution of these de-excitation channels with excitation energy has also been obtained. The comparison of the data with predictions of several de-excitation models coupled to the INCL4 intra-nuclear cascade model shows that only GEMINI can reasonably account for the bulk of collected results, indicating that in a light system with no compression and little angular momentum, multifragmentation might not be necessary to explain the data.Comment: 4 pages, 5 figures, revised version accepted in Phys. Rev. Let

    Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response

    Get PDF
    Predictions for electron induced proton knockout from the p1/2p_{1/2} and p3/2p_{3/2} shells in 16^{16}O are presented using various approximations for the relativistic nucleonic current. Results for the differential cross section, transverse-longitudinal response (RTLR_{TL}) and left-right asymmetry ATLA_{TL} are compared at Q2=0.8|Q^2|=0.8 (GeV/c)2^2 corresponding to TJNAF experiment 89-003. We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data from the figure

    The function of CozE proteins is linked to lipoteichoic acid biosynthesis in Staphylococcus aureus.

    Get PDF
    Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in Staphylococcus aureus. We establish that there is a synthetic lethal relationship between CozE and UgtP, the enzyme synthesizing the LTA glycolipid anchor Glc <sub>2</sub> DAG. By contrast, in cells lacking LtaA, the flippase of Glc <sub>2</sub> DAG, the essentiality of CozE proteins was alleviated, suggesting that the function of CozE proteins is linked to the synthesis and flipping of the glycolipid anchor. CozE proteins were indeed found to modulate the flipping activity of LtaA in vitro. Furthermore, CozEb was shown to control LTA polymer length and stability. Together, these findings establish CozE proteins as novel players in membrane homeostasis and LTA biosynthesis in S. aureus.IMPORTANCELipoteichoic acids are major constituents of the cell wall of Gram-positive bacteria. These anionic polymers are important virulence factors and modulators of antibiotic susceptibility in the important pathogen Staphylococcus aureus. They are also critical for maintaining cell integrity and facilitating proper cell division. In this work, we discover that a family of membrane proteins named CozE is involved in the biosynthesis of lipoteichoic acids (LTAs) in S. aureus. CozE proteins have previously been shown to affect bacterial cell division, but we here show that these proteins affect LTA length and stability, as well as the flipping of glycolipids between membrane leaflets. This new mechanism of LTA control may thus have implications for the virulence and antibiotic susceptibility of S. aureus
    corecore