14 research outputs found

    Reusable Ionogel-based Photo-actuators in a Lab-on-a-disc

    Get PDF
    This paper describes the design, fabrication and performance of a reusable ionogel-based photo-actuator, in-situ photopolymerised into a lab-on-a-disc microfluidic device, for flow control. The ionogel provides an effective barrier to liquids during storage of reagents and spinning of the disc. A simple LED (white light) triggers actuation of the ionogel for selective and precise channel opening at a desired location and time. The mechanism of actuation is reversible, and regeneration of the actuator is possible with an acid chloride solution. In order to achieve regeneration, the Lab-on-a-Disc device was designed with a microchannel connected perpendicularly to the bottom of the ionogel actuator (regeneration channel). This configuration allows the acid solution to reach the actuator, independently from the main channel, which initiates ionogel swelling and main channel closure, and thereby enables reusability of the whole device.Economía y Competitividad), Spain. This project has receivedfunding from the European Union Seventh Framework Programme(FP7) for Research, Technological Development and Demonstrationunder grant agreement no. 604241. JS and FBL acknowledge fund-ing support from Gobierno de Espa˜na, Ministerio de Economía yCompetitividad, with Grant No. BIO2016-80417-P and personallyacknowledge to Marian M. De Pancorbo for letting them to use herlaboratory facilities at UPV/EHU. A.T., L.F., and D.D. are grateful forfinancial support from the Marie Curie Innovative Training Net-work OrgBIO (Marie Curie ITN, GA607896) and Science FoundationIreland (SFI) under the Insight Centre for Data Analytics initiative,Grant Number SFI/12/RC/2289

    Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle

    Get PDF
    A centrifugally driven pulse-free flow has been used for generation of tripolyphosphate (TPP)-gelated chitosan beads with tunable diameters ranging from 148 to 257 lm. The production process requires a single motor as the sole actively actuated component. The 2% (w/w) chitosan solution was extruded through a polymeric nozzle with an inner diameter of 127 lm in the centrifugal field ranging from 93 to 452g and the drops were collected in an Eppendorf tube containing 10% (w/w) TPP solution at pH 4.0. The reproducibility of the bead diameters out of different nozzles was very good with overall CVs of the bead diameters down to 15% and the production rate was 45 beads per second per nozzle at 44 Hz rotor frequency. The production rate was proportional to the sixth power of the rotor frequency, which was explained by the non-Newtonian behaviour of the chitosan solution with a flow behaviour index of 0.466. An analytical model for the bead diameter and production rate has been presented and validated by the experimental data. The shrinkage of chitosan drops during gelation was estimated from the observations and the theoretical model

    Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device

    No full text
    We present a novel paper-polymer hybrid construct for the simple automation of fundamental microfluidic operations in a lab-on-a-disc platform. The novel design, we term a paper siphon, consists of chromatographic paper strips embedded along a siphon microchannel. The paper siphon relies on two main interplaying forces to create unique valving and liquid-sampling methods in centrifugal microfluidics. At sufficiently low speeds, the inherent wicking of the paper overcomes the rotationally induced centrifugal force to drive liquids towards inwards positions of the disc. At elevated speeds, the dominant centrifugal force will extract liquid from the siphon paper strip towards the edge of the disc. Distinct modes of flow control have been developed to account for water (reagent) and more viscous plasma samples. The system functionality is demonstrated by the automation of sequential sample preparation steps in a colorimetric triglyceride assay: plasma is metered from a whole blood sample and incubated with a specific enzymatic mixture, followed by detection of triglyceride levels through (off-disc) absorbance measurements. The successful quantification of triglycerides and the simple fabrication offer attractive directions for such hybrid devices in low-cost bioanalysis

    Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices

    No full text
    We present a novel, low-resource fabrication and assembly method for creating disposable amperometric detectors in hybrid paper-polymer devices. Currently, mere paper-based microfluidics is far from being able to achieve the same level of process control and integration as state-of-the-art microfluidic devices made of polymers. To overcome this limitation, in this work both substrate types are synergistically combined through a hybrid, multi-component/multi-material system assembly. Using established inkjet wax printing, we transform the paper into a profoundly hydrophobic substrate in order to create carbon electrodes which are simply patterned from carbon inks via custom made adhesive stencils. By virtue of the compressibility of the paper substrate, the resulting electrodeon- paper hybrids can be directly embedded in conventional, 3D polymeric devices by bonding through an adhesive layer. This manufacturing scheme can be easily recreated with readily available off-the-shelf equipment, and is extremely cost-efficient and rapid with turn-around times of only a few hours

    Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation

    Get PDF
    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction of metered plasma, the controlled release of sample and reagents (enzymes, co-factors and fluorescent labels), and incubation and detection steps. Flow control is implemented by a rotationally actuated dissolvable film (DF) valving scheme. In the valves, the burst pressure is primarily determined by the radial position, geometry and volume of the valve chamber and its inlet channel and can thus be individually tuned over an extraordinarily wide range of equivalent spin rates between 1,000 RPM and 5,500 RPM. Furthermore, the vapour barrier properties of the DF valves are investigated in this paper in order to further show the potential for commercially relevant on-board storage of liquid reagents during shelf-life of bioanalytical, ready-to-use discs

    Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle

    Get PDF
    A centrifugally driven pulse-free flow has been used for generation of tripolyphosphate (TPP)-gelated chitosan beads with tunable diameters ranging from 148 to 257 pm. The production process requires a single motor as the sole actively actuated component. The 2% (w/w) chitosan solution was extruded through a polymeric nozzle with an inner diameter of 127 mu m in the centrifugal field ranging from 93 to 452g and the drops were collected in an Eppendorf tube containing 10% (w/w) TPP Solution at pH 4.0. The reproducibility of the bead diameters out of different nozzles was very good with overall CVs of the bead diameters down to 15% and the production rate was 45 beads per second per nozzle at 44 Hz rotor frequency. The production rate was proportional to the sixth power of the rotor frequency, which was explained by the non-Newtonian behaviour of the chitosan solution with a flow behaviour index of 0.466. An analytical model for the bead diameter and production rate has been presented and validated by the experimental data. The shrinkage of chitosan drops during gelation was estimated from the observations and the theoretical model. (C) 2009 Elsevier Inc. All rights reserve

    Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform

    No full text
    We present a novel centrifugal microfluidic platform for the highly efficient manipulation and analysis of particles for applications in bead-based assays. The platform uses an array of geometrical V-cup barriers to trap particles using stopped-flow sedimentation under highly reproducible hydrodynamic conditions. The impact parameters governing the occupancy distribution and capture efficiency of the arrayed traps are investigated. The unique, nearly 100% capture efficiency paired with the capability to establish sharply peaked, single occupancy distributions enables a novel, digital readout mode for color-multiplexed, particle-based assays with low-complexity instrumentation. The presented technology marks an essential step towards a versatile platform for the integration of bead- and cell-based biological assays

    Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading

    No full text
    This work for the first time presents the full integration and automation concept for a range of bioassays leveraged by cascading a centrifugo-pneumatic valving scheme to sequentially move several liquids through shared channel segments for multi-step sample preparation into the detection zone. This novel centrifugo-pneumatic liquid handling significantly simplifies system manufacture by obviating the need for complex surface functionalization procedures or hybrid material integration, as it is common in conventional valving methods such as capillary burst valves or sacrificial valves. Based on the centrifugopneumatic valving scheme, this work presents a toolkit of operational elements implementing liquid loading/transfer, metering, mixing and sedimentation in a microstructured polymer disc. As a proof of concept for the broad class of homogeneous bioassays, the full integration and automation of a colorimetric nitrate/nitrite test for the detection of clinically relevant nitric oxide (NO) in whole blood is implemented. First, 40 mL of plasma is extracted from a 100 mL sample of human blood, incubated for one hour with the enzymatic mixture (60 mL), and finally reacted with 100 mL of colorimetric (Greiss) reagents. Following just a single loading phase at the beginning of the process, all of these steps are automated through the centrifugo-pneumatic cascade with a high level of flow control and synchronization. Our system shows good correlation with controls up to 50 mM of nitrate, which adequately covers the healthy human range (4 to 45.3 mM)

    An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells

    No full text
    In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers
    corecore