121 research outputs found

    Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan

    Get PDF
    We report on a multidisciplinary study of cold seeps explored in the Central Nile deep-sea fan of the Egyptian margin. Our approach combines in situ seafloor observation, geophysics, sedimentological data, measurement of bottom-water methane anomalies, pore-water and sediment geochemistry, and 230Th/U dating of authigenic carbonates. Two areas were investigated, which correspond to different sedimentary provinces. The lower slope, at ∌ 2100 m water depth, indicates deformation of sediments by gravitational processes, exhibiting slope-parallel elongated ridges and seafloor depressions. In contrast, the middle slope, at ∌ 1650 m water depth, exhibits a series of debris-flow deposits not remobilized by post-depositional gravity processes. Significant differences exist between fluid-escape structures from the two studied areas. At the lower slope, methane anomalies were detected in bottom-waters above the depressions, whereas the adjacent ridges show a frequent coverage of fractured carbonate pavements associated with chemosynthetic vent communities. Carbonate U/Th age dates (∌ 8 kyr BP), pore-water sulphate and solid phase sediment data suggest that seepage activity at those carbonate ridges has decreased over the recent past. In contrast, large (∌ 1 km2) carbonate-paved areas were discovered in the middle slope, with U/Th isotope evidence for ongoing carbonate precipitation during the Late Holocene (since ∌ 5 kyr BP at least). Our results suggest that fluid venting is closely related to sediment deformation in the Central Nile margin. It is proposed that slope instability leads to focused fluid flow in the lower slope and exposure of ‘fossil’ carbonate ridges, whereas pervasive diffuse flow prevails at the unfailed middle slope

    A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis.

    Get PDF
    BACKGROUND: Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma. METHODS: A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade. FINDINGS: 170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27-89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33-77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set. INTERPRETATION: Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas. FUNDING: Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research

    Latest Miocene restriction of the Mediterranean Outflow Water:a perspective from the Gulf of CĂĄdiz

    Get PDF
    The Mediterranean-Atlantic water mass exchange provides the ideal setting for deciphering the role of gateway evolution in ocean circulation. However, the dynamics of Mediterranean Outflow Water (MOW) during the closure of the Late Miocene Mediterranean-Atlantic gateways are poorly understood. Here, we define the sedimentary evolution of Neogene basins from the Gulf of CĂĄdiz to the West Iberian margin to investigate MOW circulation during the latest Miocene. Seismic interpretation highlights a middle to upper Messinian seismic unit of transparent facies, whose base predates the onset of the Messinian salinity crisis (MSC). Its facies and distribution imply a predominantly hemipelagic environment along the Atlantic margins, suggesting an absence or intermittence of MOW preceding evaporite precipitation in the Mediterranean, simultaneous to progressive gateway restriction. The removal of MOW from the Mediterranean-Atlantic water mass exchange reorganized the Atlantic water masses and is correlated to a severe weakening of the Atlantic Meridional Overturning Circulation (AMOC) and a period of further cooling in the North Atlantic during the latest Miocene

    Evidence of early bottom water current flow after the Messinian Salinity Crisis in the Gulf of Cadiz

    Get PDF
    Highlights ‱ Stratigraphic framework over the Miocene-Pliocene boundary at IODP Site U1387. ‱ Abrupt sedimentary changes over the Miocene-Pliocene boundary. ‱ Clear hints for onset of Mediterranean Outflow after the Messinian Salinity Crisis. ‱ Evidence of bottom water currents in contouritic sedimentation and elevated Zr/Al. ‱ Quiet, hemipelagic sediment deposition during the Messinian in the Gulf of Cadiz. Abstract Integrated Ocean Drilling Program (IODP) Expedition 339 cored multiple sites in the Gulf of Cadiz in order to study contourite deposition resulting from Mediterranean Outflow water (MOW). One hole, U1387C, was cored to a depth of 865.6 meters below seafloor (mbsf) with the goal of recovering the Latest Miocene to Pliocene transition in order to evaluate the history of MOW immediately after the end of the Messinian Salinity Crisis. To understand this history, an accurate age model for the succession is needed, but is challenging to construct, because the Miocene-Pliocene boundary is not marked by a clear biostratigraphic event in the Atlantic and coring gaps occur within the recovered stratigraphic record. These limitations are overcome by combining a variety of chronostratigraphic datasets to construct an age-model that fits the currently available age indicators and demonstrates that coring in Hole U1387C did indeed recover the Miocene-Pliocene boundary at around 826 mbsf. This boundary is associated with a distinct and abrupt change in depositional environment. During the latest Messinian, hemipelagic sediments exhibiting precession-induced climate variability were deposited. These are overlain by Pliocene sediments deposited at a much higher sedimentation rate, with much higher and more variable XRF-scanning Zr/Al ratios than the underlying sediment, and that show evidence of winnowing, particle sorting and increasing grain size, which we interpret to be related to the increasing flow of MOW. Pliocene sedimentary cyclicity is clearly visible in both the benthic ή18O record and the Zr/Al data and is probably also precessionally controlled. Two contouritic bigradational sandy-beds are revealed above the third sedimentary cycle of the Pliocene. On the basis of these results, we conclude that sedimentation associated with weak Mediterranean-Atlantic exchange, began in the Gulf of Cadiz virtually at or shortly after the Miocene-Pliocene boundary

    La médecine nucléaire au service du diagnostic médical

    No full text
    AprÚs avoir rappelé les produits radioactifs mis en jeu et décrit les appareils utilisés à fin de diagnostic, les auteurs analysent les différentes méthodes d'examens radio-isotopiques « in vitro » et « in vivo »
    • 

    corecore