52 research outputs found

    Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus Metarhizium robertsii Differs between Sexes

    Get PDF
    Juvenile hormone has been suggested to be a potential mediator in the trade-off between mating and insects' immunity. Studies on various insect taxons have found that juvenile hormone interferes with humoral and cellular immunity. Although this was shown experimentally, studies using highly virulent parasites or pathogens are lacking so far. In this study, we tested if juvenile hormone administration affected resistance against entomopathogenic fungi, Metarhizium robertsii, in the mealworm beetle, Tenebrio molitor. In previous studies with T. molitor, juvenile hormone has been found to reduce a major humoral immune effector-system (phenoloxidase) in both sexes and decrease the encapsulation response in males. Here, we found that juvenile hormone administration prolonged survival time after infection with M. robertsii in males but reduced survival time in females. This study indicates that the effects of juvenile hormone on insect immunity might be more complicated than previously considered. We also suggest that there might be a trade-off between specific and non-specific immunity since, in males, juvenile hormone enhances specific immunity but corrupts non-specific immunity. Our study highlights the importance of using real parasites and pathogens in immuno-ecological studies

    Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death

    Get PDF
    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host

    Can Insects Develop Resistance to Insect Pathogenic Fungi?

    Get PDF
    This paper presents new, important information on the microevolution of insect resistance to the insect pathogenic fungus Beauveria bassiana which will have far-reaching implications for the development of insect pathogenic fungi as biological control agents. We placed successive generations of a melanic population of the Greater wax moth, Galleria mellonella, under constant selective pressure from the insect pathogenic fungus, Beauveria bassiana. Enhanced fungal resistance was observed and larvae from the 25th generation were studied in detail to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. There are 3 novel, core findings from the study:1.Antifungal resistance in these insects is pathogen species-specific, and probably arises through trans-generational immune priming. The resistance was less obvious in earlier generations, suggesting subtle cumulative changes that are only fully apparent in the 25th generation. 2.The insect’s fecundity is already pushed close to minimum by its melanic phenotype. Therefore, the additional drain on resources required to boost antifungal defence still more, comes not from further compromising life history traits but via a re-allocation of the insect’s immune defences. Specifically during B. bassiana infection, systemic (fat body and hemocoel) responses, particularly the expression of antimicrobial peptides, are damped down in favour of a tailored repertoire of enhanced responses in the integument (cuticle and epidermis) – the foremost and most important barrier to natural fungal infection. 3.A previously-overlooked range of putative stress-management factors are activated during the specific response of selected insects to B. bassiana. This too occurs primarily in the integument, and contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host’s own immune responses during the battle between host and pathogen.No other study to date has examined so many genes in this context. Indeed, we show that the epidermis has a great capacity to express defense and stress-management genes as well as the fat body (which is the main tissue producing antimicrobial peptides and has been the traditional focus of attention). We therefore propose a “be specific / fight locally / de-stress” model to explain resource allocation and defence priorities for insects selected for superior resistance to insect-pathogenic fungi. However, we also show that these insects are less fecund and probably at no evolutionary advantage in the wild, implying that the risk is small of biological control agents failing in the field

    Host–Pathogen Interactions: Insects vs. Fungi

    No full text
    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens [...

    Multifaceted Beauveria bassiana and Other Insect-Related Fungi

    No full text
    Since Agostino Bassi first isolated the fungal pathogenic agent of the white muscardine in insects (later named Beauveria bassiana in his honor), and Ilya Mechnikov cultivated Metarhizium anisopliae as a first approach to use fungi as pest control agents, many other entomopathogenic fungi have been studied over the last two centuries [1,2]. There is evidence of a several-million-year coevolutionary history between invertebrate-pathogenic fungi and their hosts. Fungus–insect interactions are known to drive pathogenic cycles that usually culminate in killing the hosts; however, these fungi are also facultative saprophytes in the soil and/or the rhizosphere [3,4]. They can also develop endophytic relationships with plants, conferring protection to the host plant from the insects that feed on them [5]. In addition to invertebrate pathology, B. bassiana also has diverse applications in a range of other disciplines, including as an important whole-cell eukaryotic biocatalyst, and together with other entomopathogenic fungi, remains a reservoir for the discovery of numerous secondary metabolites with bioactive functions [6]. These topics were addressed in two Special Issues, which have captured a diversity of studies that focus on biological, molecular, and biotechnological aspects of the interaction between insect-related fungi and their wide range of hosts, including arthropods and plants, as well as on the expression of secondary metabolites, and other aspects regarding their catalyst role in biotransformation and bioremediation. A total of 11 original articles and one review article were published in the Special Issues “Multifaceted Beauveria bassiana and Other Insect-Related Fungi 1.0” (9 articles) and “Multifaceted Beauveria bassiana and Other Insect-Related Fungi 2.0” (3 articles). We briefly summarize them in the following paragraphs and encourage readers to explore them fully.Instituto de Investigaciones Bioquímicas de La Plat

    The effect of silicon dioxide nanoparticles combined with entomopathogenic bacteria or fungus on the survival of Colorado potato beetle and cabbage beetles

    No full text
    Three types of modified silicon dioxide nanoparticles (SiO2, 10-20 nm) with additives of epoxy, silane and amino groups, used independently and in combination with the entomopathogenic bacteria Bacillus thuringiensis subsp. morrisoni and fungus Metarhizium robertsii were tested against Colorado potato beetle (Leptinotarsa decemlineata) and cabbage beetles (Phyllotreta spp.). All three nanoparticles were found to have an entomocidal effect on Colorado potato beetle larvae and crucifer flea beetles when ingested. Increased susceptibility of insects to B. thuringiensis or M. robertsii blastospores and their metabolites was shown after exposure to the modified silicon dioxide nanoparticles. The potential of modified silicon dioxide nanoparticles to enhance the efficiency of biopesticides based on the bacteria B. thuringiensis and fungi M. robertsii is considered in the paper

    Multifaceted <i>Beauveria bassiana</i> and Other Insect-Related Fungi

    No full text
    Since Agostino Bassi first isolated the fungal pathogenic agent of the white muscardine in insects (later named Beauveria bassiana in his honor), and Ilya Mechnikov cultivated Metarhizium anisopliae as a first approach to use fungi as pest control agents, many other entomopathogenic fungi have been studied over the last two centuries [...

    Data from: Intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana, in the greater wax moth, Galleria mellonella

    No full text
    In addition to nutritional conditions experienced by individuals themselves, those experienced by their parents can affect their immune function. Here, we studied the intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana, in the greater wax moth, Galleria mellonella. In the first part of the study, a split-brood design was used to compare the susceptibility of full sibs raised either on low- or on high-nutrition larval diet. In the second part of the study, a similar experimental design was employed to investigate the effects of maternal and paternal diet as well as their interaction on offspring's susceptibility. In the first part of the study, we found that individuals fed with high-nutrition diet had higher mortality from infection than individuals fed with low-nutrition diet. However, diet did not affect post-infection survival time. Conversely, in the second part of the study, maternal diet was found to have no significant effect on final mortality rate of offspring, but it affected survival time: larvae with high-nutrition maternal diet survived fewer days after infection than larvae with low-nutrition maternal diet. Paternal diet had no significant effect on offspring's susceptibility to the fungus, indicating that paternal effects are not as important as maternal effects in influencing immune function in this species. Our findings provide further indication that maternal nutrition affects immune function in insects, and suggest that the direct effects of nutrition on immunity may be different, yet parallel, to those caused by parental nutrition

    <i>Bacillus thuringiensis</i> Spores and Cry3A Toxins Act Synergistically to Expedite Colorado Potato Beetle Mortality

    No full text
    The insect integument (exoskeleton) is an effective physiochemical barrier that limits disease-causing agents to a few portals of entry, including the gastrointestinal and reproductive tracts. The bacterial biopesticide Bacillus thuringiensis (Bt) enters the insect host via the mouth and must thwart gut-based defences to make its way into the body cavity (haemocoel) and establish infection. We sought to uncover the main antibacterial defences of the midgut and the pathophysiological features of Bt in a notable insect pest, the Colorado potato beetle Leptinotarsa decemlineata (CPB). Exposing the beetles to both Bt spores and their Cry3A toxins (crystalline δ-endotoxins) via oral inoculation led to higher mortality levels when compared to either spores or Cry3A toxins alone. Within 12 h post-exposure, Cry3A toxins caused a 1.5-fold increase in the levels of reactive oxygen species (ROS) and malondialdehyde (lipid peroxidation) within the midgut – key indicators of tissue damage. When Cry3A toxins are combined with spores, gross redox imbalance and ‘oxidation stress’ is apparent in beetle larvae. The insect detoxification system is activated when Bt spores and Cry3A toxins are administered alone or in combination to mitigate toxicosis, in addition to elevated mRNA levels of candidate defence genes (pattern-recognition receptor, stress-regulation, serine proteases, and prosaposin-like protein). The presence of bacterial spores and/or Cry3A toxins coincides with subtle changes in microbial community composition of the midgut, such as decreased Pseudomonas abundance at 48 h post inoculation. Both Bt spores and Cry3A toxins have negative impacts on larval health, and when combined, likely cause metabolic derangement, due to multiple tissue targets being compromised
    corecore