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Abstract

Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the
Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria
bassiana, 25th generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to
another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant)
and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the
possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed
resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by
prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most
likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are
suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the
integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative
stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana
but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or
helps ameliorate the damage inflicted by the fungus or the host’s own immune responses.
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Introduction

Insects are predominantly dependent upon cuticular, humoral

and cellular defenses to resist fungal pathogens. The cuticle is the

primary and possibly the most important barrier to fungal

infection. Fungistatic fatty acids, phenoloxidases and melanins

can help resist penetration of the cuticle [1]. If the pathogen is able

to breach the cuticle, it then has to contend with the host’s

humoral and cellular defenses [2]. The latter consist of hemocytes,

which will participate in wound healing and encapsulate fungal

elements too large to be phagocytosed. Key humoral elements

include phenoloxidase, reactive oxygen species and antimicrobial

peptides [3]. Phenoloxidase synthesizes melanin, a highly fungi-

toxic compound which is deposited on the fungal surface and may

block fungal development by encapsulating the pathogen in

a melanic sheath [4,5]. A wide range of antimicrobial peptides

(AMPs) have been reported in insects with most of them showing

antibacterial activity while relatively few have been identified with

antifungal activity [6,7,8,9]. Some AMPs appear to be peculiar to

specific insect species while others have been reported in several

insect species suggesting that some share a common ancestry while

others have evolved independently [10].

Insect pathogenic fungi, of which there are over 700 species,

have evolved to counter the host’s defenses using a combination

of enzymes to penetrate the cuticle and access the nutrient rich

contents of the hemocoel [11]. During the colonization phase,

the pathogen will produce a wide range of secondary

metabolites that may suppress the host’s immune system

[12,13] and concomitantly prevent secondary infections. The

type and quantity of metabolite produced in vivo is dependent

upon the host species and fungal strain [14,15]. Fungi have

evolved additional strategies to evade the host immune defenses.

For example, hyphal bodies of Metarhizium anisopliae, during

colonization of the hemocoel, will mask the cell wall by coating

it with collagen-like material [16]. The integument, therefore,

may represent the best opportunity for the insect host to detect

and incapacitate the fungal pathogen.

There is much interest in insect pathogenic fungi because they

are considered to offer an environmentally friendly alternative to

chemical pesticides, which have been withdrawn or to which pests
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have developed resistance. Strains of fungi have been identified

that kill both crop pests as well as pests of veterinary and medical

importance such as ticks, midges and mosquitoes [17,18,19]. Of

these fungi, the hypocrealean ascomycetes M. anisopliae and

Beauveria bassiana are the best characterized and the most widely

used in biological control programs. About thirteen species or sub-

species of both fungi have been formulated and registered as

mycoinsecticides or mycoacaricides [20]. Of 171 products

reviewed by [20] ca. 68% were products based on Beauveria and

Metarhizium. The use of these fungi is expected to increase

following new EU legislation particularly EC regulation 1107/

2009 and Directive 2009/128/EC which make it obligatory for

EU member states to implement the principles of Integrated Pest

Management with priority to be given to non-chemical methods of

pest control.

The increased use of insect pathogenic fungi raises the question:

will insects develop resistance to these agents in the same way that

they developed resistance to chemical pesticides? Resistance is

a major concern of producers of these fungi as biological control

agents (BCAs) as they need to recoup development costs, but also

of end users who are trapped between a diminishing number of

chemical pesticides and the lack of safe alternatives.

Insect species, populations and intrapopulation groups differ in

their susceptibility to fungal infections, which possibly reflects

adaptation of the immune defenses to local conditions. Differences

may be linked to a wide range of factors including the presence or

absence of symbionts, density-linked melanism or genetic variation

[21,22,23,24,25,26]. The darkened cuticle of melanic insects

intrinsically confers some degree of resistance to insect pathogenic

fungi [27,28,29].

Studying induced resistance poses many challenges because of

the large number of parameters that need to be considered, often

involving complex physiological responses. One approach is to

select for increased resistance to a natural pathogen under specific

laboratory conditions, then to identify correlated responses to

selection and associated cost-benefits. Kraaijeveld and Godfray

[30] used such an approach to explore the evolution of resistance

to B. bassiana in Drosophila melanogaster and found no evidence of

resistance after fifteen generations of selection. The authors did

note increased late-life fecundity in selected lines suggesting

evolved tolerance of fungal infection. In the absence of fungal

infection, these selected flies had lower fitness than control flies

indicating a trade off with increased tolerance [30]. In another

study, exposure of D. melanogaster over twenty six generations to an

antagonistic (but not true insect-pathogenic) fungus Aspergillus

nidulans, resulted in selected lines with no increase in resistance but

a reduced sensitivity to sterigmatocystin, a toxin produced by this

fungus [31]. The underlying mechanism(s) for the increased toxin

specific tolerance is unclear.

In this paper, we report an artificial selection experiment

designed to explore the evolution of resistance in a melanic morph

of the Greater wax moth, Galleria mellonella, to natural topical

infection by B. bassiana. We ask whether this morph possesses

additional traits that allow increased resistance to evolve, and, if

so, at what cost. We recognise that resistance is not entirely

mediated by an immune response and may involve multiple

factors including stress management, energy re-allocation and

tissue specific resource distribution. We therefore compared

several of these parameters in G. mellonella larvae selected for

resistance versus a non-selected line. In addition, we tested

specificity by measuring the insects’ responses to another

pathogenic fungus, M. anisopliae.

Results

Selection and Insect Survival following B. bassiana and M.
anisopliae Topical Treatment
Larvae of a melanic phenotype of the Greater wax moth,

Galleria mellonella, were selected for resistance to B. bassiana over 25

generations (Table S1). Survival assays conducted on cohorts of

the selected (S) and non-selected (NS) lines revealed significantly

increased resistance (survival times) of the 25th generation of the S

line to B. bassiana compared with the NS line (Figure 1A);

(P = 0.01). Importantly, this S line did not show statistically

significant cross-resistance to M. anisopliae than the NS insects

(Figure 1B). The defense responses of the S and NS lines to B.

bassiana and M. anisopliae were investigated further to elucidate the

underlying mechanisms for the increased resistance at species

level.

Cuticular, Cellular and Humoral Immune Defenses
following Topical Inoculation
The NS and S larvae had identical levels of basal (uninfected)

PO activity in the hemolymph and integument (Figure 2A, 2B).

However, during the early stages of topically-applied fungal

infection, the cuticular PO activity in infected S, but not infected

NS larvae, became elevated above uninfected larval levels at 24 h

post inoculation (pi) for both B. bassiana and M. anisopliae infections

(P,0.05, P,0.001 Figure 2A), with this being more pronounced

in M. anisopliae treated insects. This coincides with peak fungal

germination and penetration activities.

In contrast, hemolymph PO activity was only elevated

significantly in NS larvae exposed to M. anisopliae (P,0.01

Figure 2B) while B. bassiana failed to trigger significant changes

in PO activity in either line relative to the uninfected controls

(Figure 2B). Lysozyme-like activity was unchanged in all samples,

irrespective of the insect line or treatment (Figure 2C).

An elevated capacity for encapsulation was observed in

uninfected S larvae compared with the NS line (P,0.05;

Figure 2D), evidenced by a strong melanotic encapsulation of

the nylon implant. However, this activity was significantly lower

24 h pi with B. bassiana for both lines (Figure 2D; 1.16 times for S

line P,0.01; and 1.30 times for the NS line larvae P,0.05 relative

to the uninfected controls). Unlike B. bassiana, infection by M.

anisopliae did not lead to changes in the encapsulation response in

either line (Figure 2D).

Immunity- and Stress-related Gene Expression after
Topical Infection
Expression of seventeen immunity and putative stress manage-

ment genes was investigated in the integument and fat body of

uninfected control and fungal infected insects from both the S and

NS lines. The expression data were complex, with some genes

behaving differently under each experimental parameter. Howev-

er, several important trends can be reported. The majority of the

studied genes were expressed at a lower basal level in uninfected

control S larvae compared with the NS larvae, in both the

integument and fat body. However, a group of genes coding for

four putative stress-management factors (Contigs 704, 17373,

15256, 03093) and one AMP (Galiomicin) exhibited different

expression patterns, being slightly higher expressed in the in-

tegument (but not the fat body) of control S larvae compared with

control NS insects (1.5- to 2.5- fold increase; Figure 3A, Figure S1

and S2).

Following topical fungal infection, the pattern of gene expres-

sion in the S-line insects infected with B. bassiana was strikingly

Insect Resistance to Insect Pathogenic Fungus
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different from the other three groups of infected insects. In the

other groups (i.e. NS insects infected with either fungal species,

and in S insects infected withM. ansipoliae), fat body expression was

characterized by strong upregulation of the genes coding for

AMPs, transferrin and Hsp90 (with M. anisopliae triggering the

strongest responses; up to 910-fold in the case of Galiomicin and 50-

fold for Gallerimycin; P,0.0001 compared with uninfected larvae),

while genes with putative roles in stress-management exhibited

minimal changes or were mildly downregulated in the fat body

after infection. The expression of most stress-management and

immunity-related genes in the integument of these infected insects

was also either unchanged or downregulated, although some AMP

genes were upregulated in the integument of M. anisopliae infected

NS insects. In contrast, in S-line insects infected with B. bassiana,

seven of the nine putative stress management genes and six of the

eight immunity-related genes were preferentially upregulated in

the integument (1.5 to 4.3 fold), concomitant with very low or even

downregulated expression of the same genes in the fat body

Figure 1. Susceptibility of insects selected by B. bassiana to the fungal infections.Mortality rate of selected line and non-selected line of G.
mellonella larvae following topical treatment with the fungus B. bassiana (A) and M.anisopliae (B). (a-P,0.01 compared with non-selected line larvae.
n = 140–190 per line per treatment).
doi:10.1371/journal.pone.0060248.g001

Figure 2. Immune function of insects selected by B. bassiana under infections. Cuticular phenoloxidase (PO) activity (A), hemolymph
phenoloxidase (B), lysozyme-like (C) activity and encapsulation responses (D) in hemolymph of G. mellonella larvae from non-selected (NS) and
selected (S) lines at 24 h following topical application of B. bassiana (Bb) and M. anisopliae (Ma) (data presented as mean +/2 SEM; a-P,0.05, b-
P,0.01, c-P,0.001 compared with uninfected larvae from the same line; d-P,0.05 e-P,0.01 f-P,0.001 compared with NS larvae with the same
treatment).
doi:10.1371/journal.pone.0060248.g002

Insect Resistance to Insect Pathogenic Fungus
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(Figure 3B, 3C, Figure S1, S2, S3, S4). The significance of this

overall trend was confirmed by mega-analysis (P,0.01; Table S4).

Furthermore, differences between gene expression in the two tissue

locations was significant, i.e. B. bassiana induced significantly

higher gene expression in the S-line integument compared withM.

anisopliae (P,0.05; Table S5).

It should be noted that overall, and irrespective of the infection

state of the insect, expression levels of the genes in the S-line fat

body was significantly lower than in NS insects (P,0.01, mega-

analysis; Table S4). Upregulation of AMP genes (Gallerimycin,

Galiomicin, Gloverin, Cecropin-D, 6-tox) and Transferrin (a siderophore)

was 5–10-times higher in fat body of NS and S fungi infected

Figure 3. Defense genes expression in integuments and fat body of insects selected by B. bassiana. Expression of antimicrobial peptide
genes and other putative immunity/stress-management genes in the integument and fat body of non-selected (NS) and selected line (S) larvae,
under basal (uninfected) conditions (A), 24 h after topical B. bassiana infection (B) and 24 h afterM. anisopliae topical infection (C). Basal expression in
uninfected S larvae (A) is illustrated as a fold change relative to NS uninfected larvae and the x-axis represents basal expression in NS larvae (i.e. 1-
fold). Fold induction in infected NS larvae is also calculated relative to NS uninfected larvae (B, C). Fold induction in infected S larvae is calculated
relative to the S uninfected expression (B, C). The mean DDCt value of 3 independent experiments (each with a minimum of 5 insects per treatment)
and the SEM are reported. *-P,0.05, **-P,0.01, compared with the corresponding induced change in NS line insects. Na= not assayed in fat body
tissue.
doi:10.1371/journal.pone.0060248.g003

Insect Resistance to Insect Pathogenic Fungus
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larvae compared with expression in integuments of infected insects

(Figure. 3B, 3C).

Cost of Resistance on Life History Traits
Selected insects with enhanced resistance to B. bassiana did not

display differences in pupal biomass, but larval development time

was slightly increased (P,0.05) in S line insects compared with the

NS line (Figure 4A, 4B). Both NS and S lines exhibited reduced

fecundity (as a consequence of melanism) but this was at equivalent

levels in both lines (summarized in Table S2).

Discussion

The present study shows that insects can develop resistance to

insect pathogenic fungi but the resistance is not absolute and is at

a cost. A melanic morph of G. mellonella was found to have

increased resistance to the insect pathogen B. bassiana following

exposure of successive generations to this fungus. A combination of

mechanisms was identified that can account for this resistance,

some of which were specific for B. bassiana and others which were

non-specific antifungal defenses. Both the S (resistant) and NS

(susceptible) lines of this morph expressed a wide repertoire of

inducible immune and putative stress management genes. In the S

line these resources were re-focussed to the integument. These

‘‘front line’’ defenses were only activated by B. bassiana.

By concentrating its energies to the first and most important

barrier to infection, the host delayed pathogenesis by B. bassiana

but not M. anisopliae, demonstrating a lack of cross-resistance.

Similarly, infected S line insects exhibited higher cuticular PO

activity but not plasma PO or lysozyme. It is possible the S line

had evolved an enhanced Beauveria recognition apparatus allowing

for a more coordinated and targeted response which would

account for the increased activity in the integument but subdued

activity in the fat body, the main hemopoietic organ. The fat body

occupies a large portion of the insect hemocoel and is the principle

site for the synthesis of AMPs in insects exposed to immunogens,

including pathogens, irrespective of point of contact or entry

[32,33,34]. As far as we are aware, there are to date no reports of

pathogen specific defense mechanisms involving re-allocation of

systemic resources to localised tissues under or at risk of attack.

An insect’s repair and stress pathways limit the damage inflicted

by either pathogenesis and/or the host’s own immune response,

but little is understood about the relative contribution of damage

to the outcome of pathogenesis and the mechanistic links between

the immune system and remedial pathways [35,36]. This study

shows elevated integumental expression of all but two of the

examined putative stress management genes (i.e. 80%) in the S line

in response to Beauveria but not Metarhizium. The fact that so many

putative stress related genes were upregulated signifies their

importance in defense responses yet their role is poorly understood

and often overlooked. By working in concert with the AMPs they

probably mitigate damage and initiate repair resulting in the

increased resistance observed in the S line to B. bassiana. The

importance of the putative stress-response genes is further

emphasized in the M. anisopliae infected NS insects where

upregulation of the AMPs without concomitant upregulation of

the stress management genes failed to confer any resistance to the

pathogen.

The current study suggests that the resistance in the S line is

heritable and multi-factorial, comprising several different physio-

logical traits prioritised not only in terms of location but also

timing as they were activated concomitant with the period of

fungal penetration of the integument. For example, the elevated

cuticular PO activity would inhibit fungal growth through

synthesis of melanin and its precursors and through melanin

partially shielding cuticular proteins from degradation by Pr1,

a major cuticle degrading protease and virulence determinant

produced by B. bassiana and M. anisopliae during the infection

process. Elevated expression of IMPI specifically induced by B.

bassiana in the S line could inhibit metalloproteases produced by

insect pathogenic fungi during the infection process [37,38,39,40].

Genes coding for antioxidants are also highly represented under

the same conditions and may defend the host against reactive

oxygen species generated by PO activity during cuticle penetration

[41]. Interestingly, cecropins do have antifungal activity but have

been reported as ineffective against B. bassiana in other experi-

mental insect systems (e.g. [8]). Current knowledge is very limited

regarding the role in G. mellonella of 6–tox, although related X-tox

AMPs are considered to primarily perform opsonisation roles [42].

Gloverin is not currently known to have any potent antifungal

activity, however, putative antifungal and antimicrobial peptides

may fulfil different and currently unrecognized roles in different

hosts and under specific infection conditions. In isolation, each of

these responses are unlikely to sufficiently impart the observed

resistance, however, their impact may be amplified by a synergy

between these and other as yet unidentified traits.

There is growing evidence that insects can acquire long-term

protection against pathogens through immune priming or transfer

from the parent to the offspring, a phenomenon referred to as

transgenerational immune priming [43,44]. A wide range of

immunogens including pathogens enhance the host’s immune

system conferring greater resistance to subsequent exposure to

pathogens but the underlying mechanisms of the response remains

unclear [45]. The current study shows the 25th generation S line

larvae exhibit specific, enhanced resistance to B. bassiana without

prior exposure to the fungus, suggesting the resistance may be due

to specific transgenerational immune priming but with an

unexpected degree of specificity and complexity. An earlier but

weaker resistance was also observed in the S line which suggests

a heritable and amplified immunocompetence. These observations

warrant further investigations of possible underlying genetic and

epigenetic mechanisms of resistance.

Melanism is strongly correlated with general pathogen re-

sistance with this trait often being accompanied by a trade off in

Figure 4. Life-history traits in G. mellonella non-selected and
selected lines. Pupal weights (A) n= at least 52. Larval development
time (B) (from egg hatching to onset of pupation) n= at least 52 (data
presented as mean +/2 SEM). a-P,0.05 compared with the NS insects.
doi:10.1371/journal.pone.0060248.g004
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fecundity, development time and even expression of selected

immune components such as lysozyme [22,23,29,46]. In the

current study, the pupal weight of the melanic S and NS lines

(which is directly correlated with fecundity) was similar and

already pushed close to minimum. Therefore, the additional drain

on resources required to boost antifungal defenses still further,

comes not from compromising this life history trait but mainly via

a re-allocation of the insect’s immune defenses. It could be argued

that resistance in S line insects would increase further with time

but to meet the increased demand on resources may result in

untenable sacrifices. This is in marked contrast with insects

developing resistance to synthetic chemical insecticides where

a slight change can have a profound effect [47,48,49] whereas

resistance to B. bassiana clearly involved multiple array of inter-

dependent traits. Increased insect resistance to a strain of B.

bassiana is not a major threat to the use of insect pathogenic fungi

as biocontrol agents for several reasons. Firstly, we show that there

is no cross resistance to other fungi so the extra investment in

defense offers no benefit against other pathogens (introduced or

natural). Secondly, the investment in defense is at the expense of

fecundity. Thirdly, the downregulation of the AMPs will probably

predispose the insect to opportunistic microbial pathogens.

In conclusion, this work reports a previously overlooked

adaptation strategy of an insect to a widespread, natural

pathogenic fungus. Suppression of systemic responses allows for

re-allocation and concentration of resources to the integumental

‘‘front line’’ defenses with an array of immune and stress

management factors. This directional selection with B. bassiana

was specific to this pathogen and not M. anisopliae. However, the

less fecund insects are probably at no evolutionary advantage in

the wild, and we postulate that the risk is small of fungal biological

control agents failing in the field.

Materials and Methods

Insects
For artificial selection we used insects from a laboratory

population of a melanic morph of the Greater wax moth, Galleria

mellonella, from the Institute of Systematics and Ecology of Animals

SB RAS. The starting population was separated into two lines: one

line was exposed to the insect pathogenic fungus Beauveria bassiana

and selected for increased resistance to the pathogen (S line), and

the other line was the non-selected untreated control (NS line).

The pertinent phenotypic attributes of these lines are summarized

in Table S2. The defense responses of the 25th generation of the S

and NS insects to B. bassiana were compared to elucidate the

resistance mechanism(s). Full details of insect rearing and selection

are provided in the Text S1.

Fungal Infections
The susceptibility of S and NS lines to B. bassiana isolate Sar-31

was determined by natural topical application of conidia. Unlike

the previous generations, insects from the 25th generation were not

exposed to fungi until they were used for these experiments. Each

insect was dipped in an aqueous suspension of the pathogen for

10 s using a concentration of 7.56107 conidia/ml. Dipped insects

were kept in Petri dishes (10 larvae/dish) until sacrificed. The

uninfected control insects were dipped into distilled water (n = 60).

To determine if there was cross-resistance to other species of

fungal pathogen, repeat assays were performed as above, using the

insect pathogenic fungus Metarhizium anisopliae isolate P-72. Larvae

were observed daily for 10 days (up to pupation) for both B.

bassiana and M. anisopliae infections. The emergent adults were

monitored for several days to see what percentage were infected

with the pathogen. All dead insects were removed and examined

to confirm the cause of death. Both fungal isolates were from the

Institute of Systematics and Ecology of Animals SB RAS culture

collection. All insects used in these experiments were 6th instar

larvae raised in the same cohort. The experiment was repeated

independently three times. The total number of individuals used

from each line was 390 for the B. bassiana experiment and 285 for

M. anisopliae.

Phenoloxidase Activity in Plasma and Cuticle
Larvae were topically infected with the fungal pathogens as

described above, and at 24 post-inoculation (pi), cell-free

hemolymph plasma samples and homogenized integuments were

prepared for spectrophotometric analysis of phenoloxidase enzy-

matic activity using L-DOPA as a substrate, and expressed as

a change in absorbance/min/mg protein. Uninfected insects were

used as a control. The experiment was repeated independently

three times. Full details are provided in the Text S1.

Encapsulation Response
To determine melanotic encapsulation responses to fungal

infection, encapsulation assays were performed in NS and S

larvae. Nylon monofilament implants were retrieved from the

hemocoel and examined using image analysis software to quantify

the extent of melanization. Full details are provided in the Text S1

and experiments were repeated independently three times.

Plasma Lysozyme-like Activity
Antibacterial activity in hemolymph plasma was determined by

a zone-of-clearance assay using freeze-dried Mirococcus lysodeikticus

as a substrate suspended in agarose. The radius of the digested

zone was compared with a standard curve made with Egg White

Lysozyme [50] and expressed as an EWL equivalent (mg/ml). The

experiment was repeated independently three times. Full details

are provided in the Text S1.

QRT-PCR Analysis of Insect Immunity-related Gene
Expression
The expression of a range of G. mellonella immunity-related

genes was quantified in fat body and integument samples dissected

from S and NS larvae at 24 h after topical infection with B.

bassiana or M. anisopliae. Gene expression was measured by real-

time quantitative RT-PCR using normalised cDNA samples with

the Rotor-Gene 6000 (Corbett Research), with Rotor-Gene SYBR

Green PCR mix (Qiagen), relative to two reference genes, 18S

rRNA (AF286298) and Elongation Factor 1-alpha (EF1; AF423811).

Seventeen target genes were investigated, coding for the antimi-

crobial peptides gallerimycin, galiomicin, gloverin, cecropin D and

6-tox, the siderophore transferrin, the insect metalloproteinase

inhibitor (IMPI), one linked to immune signaling (Contig 20004),

three coding for heat-shock proteins (HSP-90, contig 21310 and

1489) whose activities ameliorate stress [51], two coding for

enzymes dealing with oxidative stress (Contigs 17373 and 03093),

one linked to G-protein coupled receptor activity and stress

response (Contigs 15265), one involved in anti-apoptosis activity

(Contig 5976) and two involved with cell proliferation (Contigs 704

and 233). Full details are provided in the Text S1 and Table S3.

Life History Traits
The following life history traits were monitored in NS and S

insects: larval development time (from egg hatching to onset of

pupation) and pupal weight.
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Data Analyses
Data analyses were performed using GraphPad Prism v4.0

(GraphPad Software, USA) and Statistic v6.0 (StatSoft Inc., USA).

Data were checked for normal (Gaussian) distribution using the

Agostino-Pearson omnibus test, and if abnormally distributed

a more conservative non-parametric analysis was applied. In Q-

RT-PCR data with a Gaussian distribution, Grubbs’ extreme

studentized deviate (ESD) test was used to exclude extreme

outliers. In order to assess overall trends associated with selection

on basal and induced gene expression, the data from three

independently repeated experiments were pooled for mega-

analysis after confirming (by 2-way ANOVA) that ‘‘experiment’’,

as treated as a variable, had no significant effect on the outcome.

Individual gene comparisons were made with non-parametric one-

way ANOVA (Kruskall-Wallis with Dunn’s post test). Cox’s

proportional hazards survival regression was used to quantify

differences in mortality rates after fungal infections between NS

and S larvae. Larvae from bioassay experiment uninfected with

the fungi all survived the duration of the experiment, for this

reason, the uninfected treatment was ignored in the statistical

analysis. One-way ANOVA (Kruskall-Wallis with Dunn’s post

test) was used to assess differences between lysozyme, PO and

encapsulation responses in S and NS insects. Differences in life

history traits were compared by non-parametric t-test (Mann-

Whitney). Differences between NS and S larvae, or between

treated and control samples, were considered significant when

P,0.05.

Supporting Information

Figure S1 AMP gene expression in integuments of
infected insects. Expression of antimicrobial peptide genes

and other immunity genes in the integument of non-selected (NS)

and selected line (S) larvae after topical B. bassiana (Bb) and M.

anisopliae (Ma) infection. Expression of genes was assayed in

integument tissue by Q-PCR in uninfected insects, and in insects

at 24 h after topical infection. Basal expression in uninfected S

larvae (bar 1) is calculated as a fold change relative to NS

uninfected larvae. Fold induction in NS larvae infected with Bb

(bar 2) and Ma (bar 5) is also calculated relative to NS uninfected

larvae. Fold induction in S larvae infected with Bb and Ma is

calculated both relative to the S uninfected expression (bars 3 & 6)

and relative to the NS uninfected baseline to indicate overall

expression (bars 4 & 7). The mean DDCt values of 3 independent

experiments are reported +/295% CI. a-P,0.05, b-P,0.01,

compared with fold induction in NS infected same fungus (i.e.

comparing S vs NS); c-P,0.05 compared with fold induction in

the same line infected by Bb (i.e. comparing Bb vs Ma).

(TIF)

Figure S2 Stress-management gene expression in in-
teguments of infected insects. Expression of putative stress-

management genes in the integument of non-selected (NS) and

selected line (S) larvae after topical B. bassiana (Bb) and M.anisopliae

(Ma) infection. Gene expression was assayed in integument tissue

by Q-PCR in uninfected animals, and in animals at 24 h after

topical infection. Basal expression in uninfected S larvae (bar 1) is

calculated as a fold change relative to NS uninfected larvae. Fold

induction in NS larvae infected with Bb (bar 2) and Ma (bar 5) is

also calculated relative to NS uninfected larvae. Fold induction in

S larvae infected with Bb and Ma is calculated both relative to the

S uninfected expression (bars 3 & 6) and relative to the NS

uninfected baseline to indicate overall expression (bars 4 & 7) The

mean DDCt value of 3 independent experiments the +/295% CI

are reported. a-P,0.05, b-P,0.01, compared with fold induction

in NS infected same fungus (i.e. comparing S vs NS); c-P,0.05

compared with fold induction in the same line infected by Bb (i.e.

comparing Bb vs Ma).

(TIF)

Figure S3 AMP gene expression in fat body of infected
insects. Expression of antimicrobial peptide genes in fat body of

non-selected (NS) and selected line (S) larvae after topical B.

bassiana (Bb) and M.anisopliae (Ma) infection. Expression of genes

was assayed in fat body tissue by Q-PCR in uninfected animals,

and in animals at 24 h after topical infections. Basal expression in

uninfected S larvae (bar 1) is calculated as a fold change relative to

NS uninfected larvae. Fold induction in NS larvae infected with

Bb (bar 2) and Ma (bar 5) is also calculated relative to NS

uninfected larvae. Fold induction in S larvae infected with Bb and

Ma is calculated both relative to the S uninfected expression (bars

3 & 6) and relative to the NS uninfected baseline to indicate overall

expression (bars 4 & 7). The mean DDCt values of 3 independent

experiments are reported +/295% CI. a-P,0.05, b-P,0.01,

compared with fold induction in NS infected same fungus (i.e.

comparing S vs NS); c-P,0.05 compared with fold induction in

the same line infected by Bb (i.e. comparing Bb vs Ma).

(TIF)

Figure S4 Stress-management gene expression in fat
body of insects. Expression of putative stress-management

genes in fat body of non-selected (NS) and selected line (S) larvae

after topical B. bassiana (Bb) and M.anisopliae (Ma) infection.

Expression of genes was assayed in fat body tissue by Q-PCR in

uninfected animals, and in animals at 24 h after topical infections.

Basal expression in uninfected S larvae (bar 1) is calculated as a fold

change relative to NS uninfected larvae. Fold induction in NS

larvae infected with Bb (bar 2) and Ma (bar 5) is also calculated

relative to NS uninfected larvae. Fold induction in S larvae

infected with Bb and Ma is calculated both relative to the S

uninfected expression (bars 3 & 6) and relative to the NS

uninfected baseline to indicate overall expression (bars 4 & 7). The

mean DDCt values of 3 independent experiments are reported +/
295% CI. a-P,0.05, b-P,0.01, compared with fold induction in

NS infected same fungus (i.e. comparing S vs NS); c-P,0.05

compared with fold induction in the same line infected by Bb (i.e.

comparing Bb vs Ma).

(TIF)

Table S1 Susceptibility of G. mellonella selected and non-selected

lines to B. bassiana. Susceptibility of Galleria mellonella larvae of

selected and non-selected lines to topical fungal infection with

Beauveria bassiana (7.56107 conidia/ml).

(DOC)

Table S2 Attributes of melanic and non-melanic G. mellonella.

Attributes of selected (resistant) and non-selected (susceptible)

melanic morphs of 5th instar Galleria mellonella larvae compared

with a non-melanic morph.

(DOC)

Table S3 Loci used for expression analysis.

(XLS)

Table S4 Mega-analysis of Q-PCR data. Summary showing

trends in gene expression in S and NS line G. mellonella larvae in

different tissues following infection with B. bassiana and M.

anispoliae: effect of selection on gene expression.

(DOC)

Table S5 Mega-analysis of Q-PCR data. Summary showing

trends in gene expression in S and NS line G. mellonella larvae in
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different tissues following infection with B. bassiana and M.

anispoliae: effect of fungal species on gene expression.

(DOC)

Text S1 Referenced experimental procedures.
(DOC)
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range activation of systemic immunity through peptidoglycan diffusion in

Drosophila. PLoS Pathogens 5: e1000694.

33. Lemaitre B, Hoffmann JA (2007) The host defense of Drosophila melanogaster.

Annu Rev Immunol 25: 697–743.

34. Whitten M, Sun F, Tew I, Schaub G, Soukou C, et al. (2007) Differential

modulation of Rhodnius prolixus nitric oxide activities following challenge with

Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect

Biochemistry and Molecular Biology 37: 440–452.

35. Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host

translational blockage inhibits immune responses and epithelial renewal in the

Drosophila gut. Cell Host and Microbe 12: 60–70.

36. Sadd BM, Siva-Jothy MT (2006) Self-harm caused by an insect’s innate

immunity. Proceedings of the Royal Society B: Biological Sciences 273: 2571–

2574.

37. St. Leger RJ, Cooper RM, Charnely AK (1988) The effect of melanization of

Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. Journal of

Invertebrate Pathology 52: 459–470.

38. Joshi L, St. Leger RJ, Bidochka MJ (1995) Cloning of a cuticle-degrading

protease from the entomopathogenic fungus, Beauveria bassiana. FEMS

Microbiology Letters 125: 211–217.

39. Vilcinskas A (2011) Coevolution between pathogen-derived proteinases and

proteinase inhibitors of host insects. Virulence 1: 206–214.

40. Qazi SS, Khachatourians GG (2007) Hydrated conidia of Metarhizium anisopliae

release a family of metalloproteases. Journal of Invertebrate Pathology 95: 48–

59.

41. Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic

reactions: Applications to insect innate immunity. Insect Biochemistry and

Molecular Biology 35: 443–459.

42. Destoumieux-Garzón D, Brehelin M, Bulet P, Boublik Y, Girard P-A, et al.

(2009) Spodoptera frugiperda X-Tox Protein, an Immune Related Defensin Rosary,

Has Lost the Function of Ancestral Defensins. PLoS ONE 4: e6795.

43. Moret Y (2006) ‘Trans-generational immune priming’: specific enhancement of

the antimicrobial immune response in the mealworm beetle, Tenebrio molitor.

Proceedings of the Royal Society B: Biological Sciences 273: 1399–1405.

44. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J (2009) Strain-specific priming of

resistance in the red flour beetle, Tribolium castaneum. Proceedings of the Royal

Society B: Biological Sciences 276: 145–151.

45. Sadd BM, Schmid-Hempel P (2009) Ecological and evolutionary implications of

specific immune responses. In: Rolff J, Reynolds S, editors. Insect infection and

immunity: evolution, ecology, and mechanisms Oxford: Oxford University

Press. 225–240.

Insect Resistance to Insect Pathogenic Fungus

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e60248



46. Cotter SC, Myatt JP, Benskin CMH, Wilson K (2008) Selection for cuticular

melanism reveals immune function and life-history trade-offs in Spodoptera

littoralis. Journal of Evolutionary Biology 21: 1744–1754.

47. Silva AX, Jander G, Samaniego H, Ramsey JS, Figueroa CC (2012) Insecticide

Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera:
Aphididae) I: A Transcriptomic Survey. PLoS ONE 7: e36366.

48. Alon M, Alon F, Nauen R, Morin S (2008) Organophosphates’ resistance in the
B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point

mutation in an ace1-type acetylcholinesterase and overexpression of carbox-

ylesterase. Insect Biochemistry and Molecular Biology 38: 940–949.

49. Arnaud L, Haubruge E (2002) Insecticide resistance enhances male reproductive

success in a beetle. Evolution 56: 2435–2444.

50. Kraaijeveld AR, Elrayes NP, Schuppe Hr, Newland PL (2011) L-arginine

enhances immunity to parasitoids in Drosophila melanogaster and increases NO

production in lamellocytes. Developmental & Comparative Immunology 35:

857–864.

51. Semighini CP, Heitman J (2009) Dynamic duo takes down fungal villains.

Proceedings of the National Academy of Sciences 106: 2971–2972.

Insect Resistance to Insect Pathogenic Fungus

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e60248


