1,555 research outputs found

    Strain-dependent host transcriptional responses to toxoplasma infection are largely conserved in mammalian and avian hosts

    Get PDF
    Toxoplasma gondii has a remarkable ability to infect an enormous variety of mammalian and avian species. Given this, it is surprising that three strains (Types I/II/III) account for the majority of isolates from Europe/North America. The selective pressures that have driven the emergence of these particular strains, however, remain enigmatic. We hypothesized that strain selection might be partially driven by adaptation of strains for mammalian versus avian hosts. To test this, we examine in vitro, strain-dependent host responses in fibroblasts of a representative avian host, the chicken (Gallus gallus). Using gene expression profiling of infected chicken embryonic fibroblasts and pathway analysis to assess host response, we show here that chicken cells respond with distinct transcriptional profiles upon infection with Type II versus III strains that are reminiscent of profiles observed in mammalian cells. To identify the parasite drivers of these differences, chicken fibroblasts were infected with individual F1 progeny of a Type II x III cross and host gene expression was assessed for each by microarray. QTL mapping of transcriptional differences suggested, and deletion strains confirmed, that, as in mammalian cells, the polymorphic rhoptry kinase ROP16 is the major driver of strain-specific responses. We originally hypothesized that comparing avian versus mammalian host response might reveal an inversion in parasite strain-dependent phenotypes; specifically, for polymorphic effectors like ROP16, we hypothesized that the allele with most activity in mammalian cells might be less active in avian cells. Instead, we found that activity of ROP16 alleles appears to be conserved across host species; moreover, additional parasite loci that were previously mapped for strain-specific effects on mammalian response showed similar strain-specific effects in chicken cells. These results indicate that if different hosts select for different parasite genotypes, the selection operates downstream of the signaling occurring during the beginning of the host's immune response. © 2011 Ong et al

    Seroprevalence of Toxoplasma gondii and Neospora spp. Infections in Arab Horses, Southwest of Iran

    Get PDF
    Background: Because of the economic importance of the Arab race horses and also the role of Toxoplasma gondii and Neospora spp. in abortion and reproductive failure of these animals, we decided to perform this study. Objectives: We designed this study to investigate the seroprevalence of anti-Toxoplasma gondii and anti-Neospora spp. antibodies in Arab horses from 12 cities of Khuzestan province in southwest of Iran. Materials and Methods: From October 2009 to March 2011, a total of 235 blood samples were collected from jugular veins of Arab horses of different ages and genders from 12 cities of Khuzestan province. All the sera were tested for anti-Toxoplasma antibodies using the modified agglutination test (MAT) and the existence of anti-Neospora antibodies were tested using N-MAT for Neospora spp. Results: According to the MAT results, antibodies to T. gondii were found in 114 (48.5%) of 235 sera with titers of 1:20 in 84, 1:40 in 19, 1:80 in four, 1:160 in four, and 1:320 in three horses. According to the N-MAT results, antibodies to Neospora spp. were found in 47 (20%) of 235 sera with titers of 1:40 in 39, 1:80 in five, and 1:160 in three horses. We did not observe any statistically significant differences regarding age groups and genders between seropositive and seronegative horses for Neospora spp. using chi-square (chi(2)) test, but it seemed that anti-Toxoplasma antibodies were more prevalent in older horses ( >= 10 years old). Conclusions: The results indicated that Arab horses are exposed to these parasites in southwest of Iran. Further research is required to determine the genomic structures of these parasites in Arab horses in southwest of Iran

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans

    Toxoplasma effectors targeting host signaling and transcription

    Get PDF
    Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by whichhas learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction

    Mechanisms and pathways of Toxoplasma gondii transepithelial migration

    Get PDF
    Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen. Infection of the host occurs principally through oral consumption of contaminated food and water with the gastrointestinal tract being the primary route for entry into the host. To promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular pathway between adjacent cells enables parasite dissemination to secondary sites of infection where chronic infection of muscle and brain tissue is established. It has recently been proposed that parasite interactions with the integral tight junction (TJ) protein occludin influences parasite transmigration of the intestinal epithelium. We review here the emerging mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the developing role played in modulating the wider TJ-associated proteome to rewire host cell regulatory systems for the benefit of the parasite

    Antibodies to Neospora caninum in sheep from slaughterhouses in the state of São Paulo, Brazil

    Full text link
    Neosporosis is an emergent disease responsible for considerable economic impact due to reproductive losses. Its zoonotic potential remains unknown. This study involved a survey of antibodies to Neospora caninum in slaughtered sheep and their association with epidemiological variables. Serum samples from 596 sheep from the states of Sao Paulo and Rio Grande do Sul, Brazil, were collected in two slaughterhouses located in Sao Paulo and evaluated by indirect fluorescence antibody test (IFAT), using cut-off titers of 25. Among these samples, 353/596 (59.23%; 95%CI 55.23-63.10) were positive and 263/353 (74.50%; 95%CI 69.71-78.77%) were from Rio Grande do Sul. Statistical associations were determined in the univariate analysis between the serological results and sex, breed and municipality of origin. Sheep that came from extensive breeding system showed higher chance (OR=2.09) of presenting antibodies to N. caninum in relation to those from semi-intensive system. Higher chance was also observed for the different studied breeds, except Bergamacia, in relation to Hampshire Down. The results revealed the presence of infection by N. caninum in sheep from slaughterhouses.A neosporose é uma doença emergente responsável por considerável impacto econômico devido a perdas reprodutivas e seu potencial zoonótico permanece desconhecido. Este estudo envolveu a pesquisa de anticorpos para Neospora caninum em ovinos abatidos e sua associação com variáveis epidemiológicas. Amostras de soro sanguíneo de 596 ovinos, procedentes dos estados de São Paulo e Rio Grande do Sul, Brasil, foram colhidas em dois abatedouros localizados em São Paulo, e avaliadas pelo teste de reação de imunofluorescência indireta (RIFI), utilizando-se como ponto de corte o título de 25. Dentre essas amostras, 353/596 (59,23%; IC95% 55,23-63,10) foram positivas e dentre os ovinos positivos 263/353 (74,50%; IC95% 69,71-78,77%) eram procedentes do Rio Grande do Sul. Associações estatísticas foram determinadas na análise univariada entre os resultados sorológicos e o sexo, raça e município de origem. Ovinos oriundos de sistema de criação extensivo demonstraram maior chance (OR=2.09) de apresentarem anticorpos para N. caninum em relação aos de sistema semi-intensivo. Uma maior chance também foi observada para as diferentes raças estudadas, exceto Bergamácia, em relação à raça Hampshire Down. Os resultados revelaram a presença de infecção por N. caninum em ovinos de abatedouros.Univ Estadual Campinas, UNICAMP, Fac Ciencias Med, Dept Saude Colet, Campinas, SP, BrazilMississippi State Univ, Coll Vet Med, Dept Pathobiol &Populat Med, Mississippi State, MS 39762 USAUniv Estadual Paulista, UNESP, Dept Higiene Vet &Saude Publ, Fac Med Vet &Zootecnia, BR-18618970 Botucatu, SP, BrazilDepartamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista – UNESP, Botucatu, SP, Brasi

    Cross-Sectional Study of Toxoplasma gondii Infection in Pig Farms in England

    Get PDF
    Ingestion of undercooked meat has been proposed as an important source of human Toxoplasma gondii infection. To ascertain the contribution of meat consumption to the risk of human infection, estimates of the prevalence of infection in meat-producing animals are required. A cross-sectional study was conducted to assess T. gondii infection in pigs raised in England, to identify risk factors for infection, and to compare performance of two serological tests: modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA). Blood samples from 2071 slaughter pigs originating from 131 farms were collected and 75 (3.6%) were found to be positive by MAT. Positive pigs originated from 24 farms. A subset of samples (n = 492) were tested using ELISA, and a significant disagreement (p = 50% probability of having at least one infected pig (n = 5, 6.8%) and (2) >= 10% probability (n = 15, 20.5%). Data on putative risk factors were obtained for 73 farms. Using a 10% cutoff, the relative risk (RR) of infection was higher in farms where cats have direct access to pigs' food (RR = 2.6; p = 0.04), pigs have outdoor access (RR = 3.0; p = 0.04), and farms keeping <= 200 pigs (RR = 3.9; p = 0.02), with strong collinearity between the three variables. The findings suggest a low level of T. gondii infection in the farms studied, most of which are likely to send to slaughter batches comprising 100% uninfected pigs. These results provide key inputs to quantitatively assess the T. gondii risk posed by pork to consumers
    corecore