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Abstract

Toxoplasma gondii has a remarkable ability to infect an enormous variety of mammalian and avian species. Given this, it is
surprising that three strains (Types I/II/III) account for the majority of isolates from Europe/North America. The selective
pressures that have driven the emergence of these particular strains, however, remain enigmatic. We hypothesized that
strain selection might be partially driven by adaptation of strains for mammalian versus avian hosts. To test this, we examine
in vitro, strain-dependent host responses in fibroblasts of a representative avian host, the chicken (Gallus gallus). Using gene
expression profiling of infected chicken embryonic fibroblasts and pathway analysis to assess host response, we show here
that chicken cells respond with distinct transcriptional profiles upon infection with Type II versus III strains that are
reminiscent of profiles observed in mammalian cells. To identify the parasite drivers of these differences, chicken fibroblasts
were infected with individual F1 progeny of a Type II x III cross and host gene expression was assessed for each by
microarray. QTL mapping of transcriptional differences suggested, and deletion strains confirmed, that, as in mammalian
cells, the polymorphic rhoptry kinase ROP16 is the major driver of strain-specific responses. We originally hypothesized that
comparing avian versus mammalian host response might reveal an inversion in parasite strain-dependent phenotypes;
specifically, for polymorphic effectors like ROP16, we hypothesized that the allele with most activity in mammalian cells
might be less active in avian cells. Instead, we found that activity of ROP16 alleles appears to be conserved across host
species; moreover, additional parasite loci that were previously mapped for strain-specific effects on mammalian response
showed similar strain-specific effects in chicken cells. These results indicate that if different hosts select for different parasite
genotypes, the selection operates downstream of the signaling occurring during the beginning of the host’s immune
response.
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Introduction

The Apicomplexan parasite Toxoplasma gondii is unique among

known eukaryotic pathogens in its extraordinarily broad host

range. In vitro, it can infect virtually any eukaryotic cell; although

its only known definitive hosts are felines, Toxoplasma’s known

intermediate hosts include a wide range of warm-blooded

vertebrates around the world, from avians to mammals. As these

parasites are transmitted via carnivorism and ingestion of tissue

cysts from infected animals, these intermediate hosts represent an

important part of Toxoplasma’s life cycle.

To infect a given host productively, Toxoplasma must be able to

achieve the right balance with the host’s immune response. If the

response to infection is too weak and parasites are allowed to

proliferate unchecked, the infection will overwhelm the host; but if

the immune response to infection is too robust, it can lead to host

immunopathology. The importance of this balance has been

underscored by several studies examining the role of various host

immune factors in resistance to infection. In mice deficient in key

pro-inflammatory effectors such as IL-12, IFN-c, and p47 GTPases,

even mouse-avirulent strains of Toxoplasma cause a lethal infection

characterized by extremely high parasite burden and widespread

dissemination [1]. In the converse scenario, where mice are

deficient in key regulatory cytokines such as IL-10 and IL-27,

immunopathology resulting from infection is increased [2,3].

Toxoplasma has evolved a battery of strategies for the purpose of

modulating host immunity as reviewed elsewhere [4,5]. Interest-

ingly, the success of these strategies in murine hosts appears to vary

dramatically by parasite strain. Strain-dependence has been

observed for a range of phenotypes including blockade of host

apoptosis [6], evasion of p47 GTPase-mediated killing [7],

production of IL-12 [8], intersection of MAPK signaling [9],

induction of NF-kB signaling [10], and induction and sustenance

of JAK/STAT signaling [11]. It is therefore not surprising that

where specific parasite effectors underlying these phenotypes have

been identified and characterized, they are either highly

polymorphic between different parasite strains [11,12,13] and/or

differentially expressed between strains [9,14,15].
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Diversity among Toxoplasma strains is expected given the

diversity among its hosts. Strikingly, however, just three clonal

lineages – Type I, II, and III – account for the majority of clinical

and natural isolates in Europe and North America [16].

Moreover, genotypic analysis of these strains, as well as some of

the so-called ‘atypical’ strains that do not belong to one of these

three lineages (including a recently described Type IV/X lineage

found in North American animals [17,18]), has demonstrated that

there are generally only two major allelic types for each locus [19].

Consistent with this, a genealogy of the three major strains

suggests that the Type I and III strains are each descendants of a

cross between a Type II strain and one of two closely related

ancestral strains [20].

This raises the question of what kind of selective pressures might

have culminated in the emergence of especially the Types I and III

strains and driven selection for their particular polymorphic alleles.

For example, the Type I and III alleles encoding the secreted

rhoptry kinase ROP16 are suggested to play an important role in

dampening host inflammation by activation of human and murine

STAT3 and STAT6, an activity that may yield important benefits

for the parasite [21,22]. Yet the Type II allele has been maintained

and selected for, despite its apparently decreased activity vis-à-vis

the STATs in human and murine cells resulting from a single

amino acid difference in the kinase domain [23]. Polymorphisms

in key parasite effectors likely reflect parasite adaptation for host

niches of particular importance in transmission [24]; however, the

nature of these host niches remains mysterious. One hypothesis is

that avian and mammalian hosts, being evolutionarily divergent

from each other, might represent two distinct and important host

niches and thereby partially explain the allelic dimorphism

observed in Toxoplasma strains. To return to the example of

ROP16, this hypothesis predicts that the polymorphism that

renders the Type II allele less active towards murine and human

STATs might actually promote its affinity for and activity towards

avian STATs, leading to a host-dependent inversion of the

observed phenotypic differences between strains.

Toxoplasma infects a broad range of avian species, from

passeriform birds like sparrows to domesticated birds like chickens

[25]. Very little is known, however, about the avian host response

to Toxoplasma infection, particularly how it varies by parasite

genotype. Some clues, however, come from studies of chickens

which may represent an important source of infection for humans

due to their ground-feeding habits that make them highly likely to

ingest parasite oocysts [26]. Generally, chickens are considered to

be refractory to severe Toxoplasma infection; in studies where

chickens were inoculated with high oocyst loads of either Type I or

Type II parasites, infection was confirmed by isolation of tissue

cysts, but no symptoms of disease were detected [27,28]. This is

strikingly different from the pattern observed in mice, where Type

I parasites have an LD100 of just one parasite. Outside of

experimental infections, neurological signs of toxoplasmosis have

been observed in chickens only in rare instances; the strains

isolated from these chickens were preliminarily genotyped as Type

II [29]. It is possible, however, that these strains might actually be

less common ‘atypical’ strains, as the few loci that were used for

the genotyping have been shown to yield less than complete

information [20].

We therefore set out to investigate whether and how avian host

response to Toxoplasma infection varies by parasite strain. We chose

to use chickens as a representative avian host for this study as they

are highly infected in nature [26]. Moreover, because of the

chicken’s importance to agriculture and as a model for vertebrate

development, a richer toolkit has been developed for their study

than is available for other avian species. Using transcriptomic

profiling of chicken embryonic fibroblasts and pathway analysis to

assess host response, we show here that chicken cells do indeed

respond with distinct host transcriptional profiles upon infection

with different strains. QTL analysis of these transcriptional

differences was used to map the parasite loci involved and the

results compared with previous studies in human fibroblasts. The

implications of the results for the evolution of Toxoplasma strain

differences are discussed.

Materials and Methods

Host cell culture and parasites
SL-29 primary chicken embryonic fibroblasts (CRL-1590;

ATCC, Manassas, VA) were maintained in Dulbecco’s modified

Eagle’s medium (30–2002; ATCC, Manassas, VA) supplemented

with 5% FCS (Hyclone, Logan, UT) and 5% tryptose phosphate

broth (Sigma, St. Louis, MO). Primary chicken embryonic

fibroblasts (CEFs) were derived from specific-pathogen-free

fertilized eggs purchased from Charles River (Wilmington, MA).

Fibroblasts were prepared from 12-day old embryos as described

elsewhere [30], and maintained in complete DMEM, comprised of

Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA)

supplemented with 10% heat-inactivated fetal calf serum (FCS;

Hyclone, Logan, UT), 2 mM L-glutamine, 100 U ml21 penicillin

and 100 mg ml21 streptomycin. For CEF maintenance, complete

DMEM was additionally supplemented with 1% heat-inactivated

chicken serum (Invitrogen, Carlsbad, CA), and 1 mM sodium

pyruvate (Invitrogen, Carlsbad, CA).

HFF (human foreskin fibroblasts [31]) were maintained in

complete DMEM as described previously [31]. Toxoplasma gondii

tachyzoites were maintained in vitro by serial passage on confluent

monolayers of HFF in complete DMEM at 37uC with 5% CO2, as

previously described [32]. The Type I RH and mutant RHDrop16

(‘‘ROP16-KO’’) strains have been described elsewhere [33]; the

Type II (ME49), Type III (CEP), and IIxIII F1 progeny have also

been described elsewhere [11]. F1 progeny used for this study

were: C96A5, C96B4, C96C12, C96E7, C96H6, STD3, STF3,

STG4, STC7, STC8, STD10, STE10, S2T, CL13, CL16, CL29,

S21, S23, S27, S28, and S30. Parasites were tested for

mycoplasma contamination at regular intervals and contamination

was not detected.

Microarray analysis
Parasites were harvested by syringe-lysis and washed twice in

35 ml complete DMEM, followed by filtration through a 5 mm

filter (Millipore, Billerica, MA) to remove cell debris. Confluent

monolayers of SL-29 or primary CEFs in 6-well plates were

infected at MOI ,3 and total RNA was extracted at the indicated

timepoint (5 or 24 hours post-infection) using Trizol (Invitrogen,

Carlsbad, CA). Total RNA from each sample was labeled using

either the Affymetrix One Cycle Labeling Kit or the Affymetrix 39

IVT Express Kit as indicated (Affymetrix, Santa Clara, CA). 20 mg

of resulting cRNA from each sample was hybridized onto

Affymetrix Chicken Genome Array chips. The microarray data

is MIAME compliant and the raw data has been deposited in the

NCBI Gene Expression Omnibus (GSE29565 http://www.ncbi.

nlm.nih.gov/geo/). Gene expression values were computed by

implementing the Robust Multichip Average procedure for

normalization [34]. Data were subjected to a two-class comparison

by Significance Analysis of Microarrays (SAM 2.0) analysis [35] as

implemented in MeV v. 4.6.1 from the TM4 software suite [36].

Genes meeting the threshold of a,5% false-discovery rate (FDR)

and absolute expression fold change greater than 1.5 were

considered as significantly differentially expressed. For the

Strain-Dependent Responses to Toxoplasma Infection
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genome-wide scan, R/QTL analysis was performed as described

previously [21,37]. To determine significance, p-values were

calculated based on 500 permutations; genes that mapped to a

parasite genetic locus with a p-value of ,0.05 were considered

significant.

Pathway analysis and functional annotation
Gene set enrichment analysis (GSEA) was used to find

candidate transcription factors and canonical pathways that were

activated or induced upon infection [38,39]. This program makes

use of defined gene sets that were generated experimentally,

computationally, or by curation of literature. It then allows for

comparison of ranked lists of genes to these reference sets and

determines whether members of these reference sets are randomly

distributed throughout the ranked lists (suggesting no overlap in

the biology of these sets) or primarily found at the top or bottom of

that list (suggesting enrichment). For the purposes of hypothesis-

generation, gene sets enriched with a false discovery rate (FDR)

,0.25 were considered significant. The following gene sets from

the Molecular Signatures Database were evaluated for enrich-

ment: c2.cgp.v3.0 (gene sets derived from literature where cells

were subjected to either chemical or genetic perturbations),

c2.kegg (gene sets derived from KEGG canonical pathway lists),

and c3.tft.v3.0 (gene sets predicted on the basis of a common cis-

regulatory motif conserved in the human, mouse, rat, and dog

genomes) [40]. Identification of functionally-related gene groups

Figure 1. Type II and Type III strains induce distinct transcriptional programs in chicken embryonic fibroblasts. Microarray analysis of
SL-29 chicken embryonic fibroblasts subjected to mock, Type II (ME49), or Type III (CEP) infection. 2 biological replicates were performed for each
treatment and RNA was harvested at 24 hours post-infection. Genes shown are those identified as significantly up-regulated by SAM analysis
(FDR,5% and fold change $1.5) either in Type III infection over Type II infection (A) or in Type II infection over Type III infection (B). For heatmap
representation, probe intensities were log2-transformed and median centered by row; unsupervised hierarchical clustering was then performed
(cluster numbers indicated on left). The color gradient key at top represents the color range in a log2 scale, from relative upregulation by 2-fold
(yellow) and relative downregulation by 2-fold (blue).
doi:10.1371/journal.pone.0026369.g001

Strain-Dependent Responses to Toxoplasma Infection

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e26369



enriched in gene sets of interest was performed using DAVID 6.7,

available at http://david.abcc.ncifcrf.gov/[41,42].

Results

Type II strains and Type III strains induce distinct
transcriptional profiles in infected chicken embryonic
fibroblasts

Strain-dependent host response to the widespread Toxoplasma

strains Type II and Type III has been extensively characterized at the

transcriptional level in human foreskin fibroblasts [11,22] and murine

macrophages [43]. To test the hypothesis that these strains might

elicit different host responses in avian cells, we infected SL-29 primary

chicken embryonic fibroblasts (SL-29s) with Type II and Type III

parasites and analyzed host gene expression 24 hours post-infection

by Affymetrix microarrays. Significance Analysis of Microarrays

(SAM) identified 432 genes that were significantly up-regulated

($1.5-fold-change and FDR,5%) in cells infected with Type III

versus Type II strains, and 450 genes that were significantly up-

regulated by the same criteria in Type II versus Type III infections

(Figure 1A and B). In some cases, both strains induced up-regulation

of gene expression relative to mock-infected cells (cluster 5 in Fig 1A,

cluster 1 in Fig. 1B), but the degree of up-regulation differed between

strains. In other cases, the directionality of the change in gene

expression relative to mock-infected cells was inverted depending on

the strain (cluster 4 in Fig. 1A, clusters 5 and 6 in 1B).

To investigate which signaling pathways might be implicated in

these strain-specific differences in expression profiles, we used

Gene Set Enrichment Analysis (GSEA), which identifies gene sets

that previous microarray experiments have reported to be

coordinately regulated by any of a large number of conditions.

Analysis of genes that were more highly expressed in the Type III-

infected cells vs. Type II infections revealed significant overlap

with gene sets associated with cell proliferation or oncogenic

transformation (Table 1), whereas analysis of genes more highly

expressed in Type II-infections identified gene sets up-regulated in

response to TNF-signaling, interferon-stimulation, and NF-kB-

stimulation (Table 2). Consistent with this, analysis using DAVID

software to identify enriched biological themes and functional

annotations showed that genes with higher expression in Type III-

infected cells vs. Type II-infections were enriched in functional

annotations for cellular adhesion, motility, proliferation, and JAK/

STAT signaling (Table 3), whereas genes with higher expression in

Type II-infected cells were enriched in functional associations with

leukocyte/lymphocyte regulation and apoptosis (Table 4).

To further dissect signaling pathways that were perturbed in a

strain-specific manner, we attempted to use GSEA to identify

transcription factor binding sites (TFBSs) enriched in genes

specifically up-regulated by either Type II or Type III infection.

The only TFBSs identified as significantly enriched (FDR,0.25)

in genes highly expressed during Type II infection were NF-kB

(FDR of 0.228) and PBX1 (FDR of 0.226) (Tables S1 and S2). No

TFBSs emerged as significantly enriched in genes highly expressed

during Type III infection. This lack of predictive ability for TFBSs

in an avian genome is not surprising given that GSEA makes use

Table 1. Gene sets from the Molecular Signatures Database
CGP (chemical and genetic perturbations) library identified by
GSEA as significantly enriched in Type III-induced genes.

NAME
FDR
q-val

NIKOLSKY_BREAST_CANCER_17Q11_Q21_AMPLICON 0.04

SAKAI_CHRONIC_HEPATITIS_VS_LIVER_CANCER_DN 0.05

RORIE_TARGETS_OF_EWSR1_FLI1_FUSION_DN 0.05

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_WITH_LMP1_DN 0.06

BEIER_GLIOMA_STEM_CELL_UP 0.09

GAUSSMANN_MLL_AF4_FUSION_TARGETS_D_UP 0.10

SATO_SILENCED_EPIGENETICALLY_IN_PANCREATIC_CANCER 0.10

RICKMAN_HEAD_AND_NECK_CANCER_F 0.10

WANG_BARRETTS_ESOPHAGUS_UP 0.11

KLEIN_PRIMARY_EFFUSION_LYMPHOMA_UP 0.15

GU_PDEF_TARGETS_DN 0.15

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA2_DN 0.15

ROYLANCE_BREAST_CANCER_16Q_COPY_NUMBER_UP 0.16

SMID_BREAST_CANCER_RELAPSE_IN_BONE_UP 0.17

LI_CISPLATIN_RESISTANCE_DN 0.21

RICKMAN_HEAD_AND_NECK_CANCER_E 0.22

HELLER_SILENCED_BY_METHYLATION_DN 0.22

HANN_RESISTANCE_TO_BCL2_INHIBITOR_DN 0.23

BROWNE_HCMV_INFECTION_18HR_DN 0.23

VALK_AML_WITH_FLT3_ITD 0.23

Gene sets with a false-discovery rate (FDR) q-val#0.25 were considered
significant and are listed here.
doi:10.1371/journal.pone.0026369.t001

Table 2. Gene sets from the Molecular Signatures Database
CGP (chemical and genetic perturbations) library identified by
GSEA as significantly enriched in Type II-induced genes.

NAME FDR q-val

SANA_TNF_SIGNALING_UP 0

HESS_TARGETS_OF_HOXA9_AND_MEIS1_DN 0.04

JAZAERI_BREAST_CANCER_BRCA1_VS_BRCA2_DN 0.04

HINATA_NFKB_TARGETS_KERATINOCYTE_UP 0.04

FARMER_BREAST_CANCER_CLUSTER_1 0.05

LINDSTEDT_DENDRITIC_CELL_MATURATION_A 0.05

HINATA_NFKB_TARGETS_FIBROBLAST_UP 0.07

DAZARD_RESPONSE_TO_UV_SCC_UP 0.07

TRAYNOR_RETT_SYNDROM_UP 0.08

REN_ALVEOLAR_RHABDOMYOSARCOMA_UP 0.08

BROWNE_INTERFERON_RESPONSIVE_GENES 0.08

CHEN_NEUROBLASTOMA_COPY_NUMBER_GAINS 0.09

DER_IFN_GAMMA_RESPONSE_UP 0.09

DUTTA_APOPTOSIS_VIA_NFKB 0.13

XU_HGF_SIGNALING_NOT_VIA_AKT1_48HR_UP 0.13

ZUCCHI_METASTASIS_DN 0.13

TARTE_PLASMA_CELL_VS_B_LYMPHOCYTE_DN 0.14

XU_HGF_TARGETS_REPRESSED_BY_AKT1_DN 0.14

GEISS_RESPONSE_TO_DSRNA_UP 0.15

ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_UP 0.15

COLIN_PILOCYTIC_ASTROCYTOMA_VS_GLIOBLASTOMA_DN 0.15

LIANG_SILENCED_BY_METHYLATION_2 0.16

LINDSTEDT_DENDRITIC_CELL_MATURATION_B 0.25

Gene sets with a false-discovery rate (FDR) q-val#0.25 were considered
significant and are listed here.
doi:10.1371/journal.pone.0026369.t002
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of reference gene sets that are either predicted to be targets of

specific transcription factors based on bioinformatic analysis of

conserved motifs, or have been identified as transcription factor

targets based on experimental data. In both instances, the GSEA

TFBS reference gene sets were generated based on data from

select mammalian genomes, thus hindering direct comparison to

an avian context.

Overall, these results are reminiscent of the patterns observed

for Type II and Type III infection of murine macrophages [43]

and HFF [22]. As in the latter two cell lines, the gene signature

specific to Type II infection in chicken fibroblasts was found to be

significantly enriched in TFBSs for NF-kB. While direct

comparison of TFBSs enriched in the gene signature specific to

Type III infection of chicken cells vs. mammalian cells is not

possible for the reasons discussed above, functional annotation of

the Type III-specific signature in chicken fibroblasts bears a strong

resemblance to the Type III-specific signature in murine

macrophages, which is characterized by enrichment in TFBSs of

transcription factors involved in hematopoietic cell proliferation,

survival, and differentiation (GATA1, E2F and HOXA9) [43].

Genome-wide scan locates QTLs in the parasite genome
corresponding to strain-specific host gene expression

To further dissect the basis of the strain-specific transcriptional

profiles observed above, we set out to identify the parasite loci

involved using an approach that has previously revealed several

key parasite effectors operating in infection of human fibroblasts

[21]. This approach is based on the premise that if a host response

phenotype is strain-specifically regulated and has a basis in

parasite genotype, it should segregate among F1 progeny derived

from a cross between two strains that differ in that phenotype [11].

Accordingly, SL-29 chicken embryonic fibroblasts were infected

with 21 F1 progeny from a Type II x Type III cross and host gene

expression at 24 hours post-infection was profiled by microarray

as before. We then performed a genome-wide scan for association

of Toxoplasma genetic markers and the expression level of each of

the host genes represented on the microarray. Out of 32,773

chicken-specific probes, representing over 28,000 unique chicken

genes, 689 had LOD scores that mapped to a specific Toxoplasma

genomic locus with a significance level of p,0.05 (calculated by

permutation test; Fig. 2 and Table 5). Substantial clusters of host

genes (50 or more) mapped to chromosomes Ia, VIIa, VIIb, and

X. The presence of a peak on chromosome Ia was intriguing as it

is unusually monomorphic among the three major strains of

Toxoplasma; it has been suggested that it may carry an especially

important combination of monomorphic alleles that has facilitated

the extraordinary global sweep of these three clonal lineages [44].

This high level of conservation may facilitate future identification

of the relevant locus, as a search of ToxoDB v6.4 reveals just 24

predicted genes that contain non-synonymous SNPs between the

Type II and Type III genomes. Two of these predicted genes,

TGME49_094190 (encoding a protein with homology to 3-

hydroxyisobutyryl-CoA hydrolase) and TGME49_095380 (encod-

ing a protein with no known function and no apparent

homologues outside the Apicomplexa), contain a putative signal-

peptide and may be secreted into the host cell, making them

especially good candidates for modulating host cell response in a

strain-specific manner [45]. On VIIa, the majority of genes

mapped to the CS3 marker, which has previously been associated

with the polymorphic rhoptry kinase ROP18 [14,15]. On VIIb,

the majority of genes mapped in the vicinity of the L339 and

AK104 markers, which have been previously been associated with

the polymorphic rhoptry kinase ROP16 [21]. On chromosome X,

there were two distinct peaks; one is at the right end and indicates

Table 3. Functional categories identified by DAVID as
significantly enriched (FDR,25%) in Type III-induced genes.

Term FDR (%)

GO:0005576,extracellular region 0.0000033

gga04512:ECM-receptor interaction 0.0022

signal 0.0077

GO:0044421,extracellular region part 0.0089

signal peptide 0.042

gga04510:Focal adhesion 0.062

GO:0031012,extracellular matrix 0.18

glycoprotein 0.18

GO:0040008,regulation of growth 0.43

Secreted 0.38

GO:0009968,negative regulation of signal transduction 0.52

GO:0005578,proteinaceous extracellular matrix 0.50

GO:0010648,negative regulation of cell communication 0.70

GO:0045177,apical part of cell 0.56

GO:0007167,enzyme linked receptor protein signaling pathway 0.96

GO:0007155,cell adhesion 1.08

GO:0022610,biological adhesion 1.08

disulfide bond 0.96

IPR000980:SH2 motif 1.25

GO:0005887,integral to plasma membrane 1.11

glycosylation site:N-linked (GlcNAc…) 1.41

GO:0031226,intrinsic to plasma membrane 1.28

IPR001496:SOCS protein, C-terminal 1.94

SM00252:SH2 2.15

GO:0051240,positive regulation of multicellular organismal
process

3.28

SM00253:SOCS 2.58

GO:0006928,cell motion 4.63

disulfide bond 6.54

GO:0007169,transmembrane receptor protein tyrosine kinase
signaling pathway

8.40

GO:0001568,blood vessel development 8.84

GO:0007242,intracellular signaling cascade 10.62

GO:0001944,vasculature development 10.75

Signal transduction inhibitor 8.49

IPR013320:Concanavalin A-like lectin/glucanase, subgroup 9.92

GO:0031175,neuron projection development 11.93

GO:0051094,positive regulation of developmental process 12.34

GO:0030030,cell projection organization 13.48

Immunoglobulin domain 10.33

GO:0040014,regulation of multicellular organism growth 15.59

GO:0001525,angiogenesis 16.06

gga04630:Jak-STAT signaling pathway 10.60

GO:0048514,blood vessel morphogenesis 16.36

short sequence motif:Cell attachment site 13.94

IPR013098:Immunoglobulin I-set 14.57

GO:0005886,plasma membrane 13.72

IPR012680:Laminin G, subdomain 2 15.80

GO:0019838,growth factor binding 16.18

IPR001791:Laminin G 19.14

doi:10.1371/journal.pone.0026369.t003
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cosegregation with marker AK154 while the other is at the left and

is associated with AK66 and SRS4. AK154 has been previously

linked to a key polymorphic dense granule protein, GRA15, which

directs strain-specific NF-kB activation [22]. There is no known

candidate for a polymorphic locus in the region of AK66 and

SRS4 that has been shown to impact host gene expression,

although this peak falls in the vicinity of a previously-mapped locus

for virulence in mice [15].

Although the greatest number of host gene expression

differences were found to map significantly to a QTL on

chromosome VIIa (Table 5), comparison with the data summa-

rized in Fig. 1 revealed that many of these host genes were not

originally identified as substantially and significantly different in

expression levels between Type II and Type III infections. This

might be due to the threshold set for differential expression (fold-

change $1.5 and p,0.05) or a limitation in statistical power (n = 2

for both strains) in the original comparison that was overcome in

the comparison of multiple progeny strains; it is also possible that

epistatic interactions may have masked certain effects of the VIIa

locus. Of the genes that mapped to a given parasite locus in the

analysis of the F1 progeny and that were identified as significantly

different between infection with the Type II and Type III strains

(fold change $1.5), the majority mapped to chromosome VIIb

(Table 5). Functional annotation of the genes mapping to VIIb

revealed a significant enrichment of genes involved in tyrosine

kinase signaling cascades (SH2 motifs), JAK/STAT signaling

pathways, and extracellular matrix interactions (Table 6).

ROP16 is likely the key locus on chromosome VIIb
responsible for the differences in Type III vs. Type II
infection of CEFs

Because ROP16 was previously identified as the key QTL on

chromosome VIIb responsible for strain-specific host gene expres-

sion in HFFs, specifically STAT-dependent gene expression, we

Table 4. Functional categories identified by DAVID as
significantly enriched (FDR,25%) in Type II-induced genes.

Term FDR (%)

GO:0044421,extracellular region part 0.0016

GO:0005576,extracellular region 0.0027

GO:0051249,regulation of lymphocyte activation 0.016

GO:0002694,regulation of leukocyte activation 0.025

GO:0050865,regulation of cell activation 0.044

GO:0042981,regulation of apoptosis 0.093

GO:0043067,regulation of programmed cell death 0.11

GO:0010941,regulation of cell death 0.12

GO:0050863,regulation of T cell activation 0.12

GO:0005125,cytokine activity 0.12

GO:0006955,immune response 0.19

GO:0043068,positive regulation of programmed cell death 0.19

GO:0043065,positive regulation of apoptosis 0.19

GO:0010942,positive regulation of cell death 0.21

GO:0002250,adaptive immune response 0.21

GO:0002460,adaptive immune response based on somatic
recombination of immune receptors built from immunoglobulin
superfamily domains

0.21

GO:0045619,regulation of lymphocyte differentiation 0.65

GO:0051251,positive regulation of lymphocyte activation 0.73

GO:0005615,extracellular space 0.58

GO:0002696,positive regulation of leukocyte activation 0.93

GO:0002684,positive regulation of immune system process 0.97

GO:0042127,regulation of cell proliferation 0.97

GO:0050867,positive regulation of cell activation 1.17

GO:0019724,B cell mediated immunity 1.58

GO:0002449,lymphocyte mediated immunity 2.03

GO:0031012,extracellular matrix 2.69

GO:0002443,leukocyte mediated immunity 3.79

cytokine 3.24

GO:0043383,negative T cell selection 4.50

GO:0045060,negative thymic T cell selection 4.50

signal peptide 3.69

GO:0008285,negative regulation of cell proliferation 4.76

GO:0050870,positive regulation of T cell activation 5.14

GO:0000122,negative regulation of transcription from RNA
polymerase II promoter

5.33

GO:0045580,regulation of T cell differentiation 5.34

gga04514:Cell adhesion molecules (CAMs) 3.74

GO:0046649,lymphocyte activation 7.99

GO:0048048,embryonic eye morphogenesis 9.03

GO:0005578,proteinaceous extracellular matrix 6.78

GO:0030098,lymphocyte differentiation 9.60

GO:0042110,T cell activation 11.20

GO:0045061,thymic T cell selection 11.73

GO:0051250,negative regulation of lymphocyte activation 11.73

GO:0002695,negative regulation of leukocyte activation 11.73

signal 9.10

GO:0045321,leukocyte activation 13.40

GO:0009986,cell surface 10.01

GO:0002252,immune effector process 14.67

Term FDR (%)

Secreted 11.18

GO:0050866,negative regulation of cell activation 17.84

GO:0045089,positive regulation of innate immune response 17.84

GO:0007155,cell adhesion 20.73

GO:0022610,biological adhesion 20.73

GO:0045088,regulation of innate immune response 21.17

GO:0016064,immunoglobulin mediated immune response 21.17

GO:0002521,leukocyte differentiation 21.27

GO:0001775,cell activation 22.37

GO:0030217,T cell differentiation 22.77

GO:0005604,basement membrane 17.39

GO:0009897,external side of plasma membrane 17.72

GO:0016564,transcription repressor activity 20.13

GO:0045892,negative regulation of transcription, DNA-dependent 24.25

GO:0050778,positive regulation of immune response 24.56

GO:0045058,T cell selection 24.62

GO:0045596,negative regulation of cell differentiation 26.21

gga00982:Drug metabolism 17.83

gga00980:Metabolism of xenobiotics by cytochrome P450 17.83

doi:10.1371/journal.pone.0026369.t004
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asked whether ROP16 might again be responsible for the strain-

dependent differences in CEF gene expression that maps to this

chromosome. The Type I and Type III alleles of ROP16 are nearly

identical and have been shown to have similar activity and Type I

strains have been engineered that lack ROP16; hence, we could use

such a strain to characterize ROP16-dependent effects in chicken

cells. Primary chicken embryonic fibroblasts were infected with

either wild-type (WT) or Drop16 (ROP16-KO) Type I parasites at

MOI ,5 and RNA was harvested 5 hours post-infection for

microarray analysis. This timepoint differs from the 24 hour post-

infection timepoint used for analysis of strain-dependent differences,

but was chosen to facilitate comparison to previous studies of

ROP16-dependent transcriptional effects in human fibroblasts [33]

and murine macrophages [43]. We have found this timepoint to be

most useful when dissecting the effects of ROP16, since it has such a

rapid effect on STAT activation; for other parasite effectors that act

by other mechanisms, a later timepoint may be more useful in

revealing their effects on host cells, which is why the initial analysis

of strain-dependent differences was conducted at a 24 hour

timepoint. Based on SAM analysis, 43 probesets representing 37

unique host genes were identified as significantly up-regulated ($1.5

fold-change, p,0.05) in WT versus ROP16-KO parasites (Table 7).

This gene set had significant overlap with the genes identified as

mapping to Chromosome VIIb and those that were significantly

higher in Type III versus Type II infection (Table 7). Differences

between the two sets are expected as genes that are differentially

regulated in WT vs. ROP16-KO Type I parasites reflect a

dependence on ROP16 expression, but not necessarily in an

allele-specific manner (e.g., previous studies have shown that the

Type I, II and III alleles of ROP16 all drive the early activation of

STAT3/6 signaling; it is the sustained activation of these proteins

that differs between the Type I/III and Type II alleles [33,46].

Differences in the timepoint of analysis, as discussed above, might

also be expected to affect levels of gene expression. Other differences

between Type I and Type III strains, including minor differences in

the Type I vs. III alleles of ROP16, might also partially account for

the observed differences.

As an early activator of STAT3/6, ROP16 appears to

functionally mimic some of the effects of IL-4 signaling. Consistent

with this observation, a ROP16-dependent signature reminiscent of

IL-4 and JAK/STAT signaling was observed in CEFs. For instance,

the most differentially regulated chicken gene in comparisons of

infection with WT versus ROP16-KO Type I parasites or Type III

versus Type II parasites is CCL17 (Table 7). CCL17 is typically

elicited in response to IL-4 stimulation and is a Th2-attracting

cytokine produced by monocytes and that recruits CD4+/CD25+
regulatory T cells [47]. CXCR4, another gene that is highly

differentially expressed in the comparisons reported in Table 7, is

also characteristic of a Th2 environment and is known to be IL-4

responsive [48]. Taken together, these data suggest that the Type I/

III allele of ROP16 may have conserved function in chickens

relative to mammals and drive a Th2-like transcriptional program

similar to that seen in human fibroblasts and murine macrophages.

Figure 2. Genome-wide QTL map of strain-specific differences in host gene expression in infected chicken embryonic fibroblasts.
SL-29 chicken embryonic fibroblasts were infected with 21 F1 progeny from a Type II x Type III cross and host gene expression at 24 hours post-
infection was profiled by microarray. A one-dimensional genome-wide scan was conducted to identify Toxoplasma genetic markers associated with
the expression level of each of the host genes represented on the microarray. The output of this QTL analysis is graphed here, where each line
represents a host gene that mapped with a LOD score .2 to a Toxoplasma locus. To determine significance, p-values were calculated based on 500
permutations; genes that mapped to a parasite genetic locus with a p-value of ,0.05 were considered significant. Threshold LOD scores for this p-
value varied on a gene-by-gene basis from 2.10 to 3.14 and are represented by the two dotted gray lines overlaying the graph.
doi:10.1371/journal.pone.0026369.g002
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Discussion

We report here that, contrary to our original prediction, strain-

dependent differences in the response of CEFs to infection by

Type II and Type III strains exhibit broadly similar patterns to

those previously reported in murine macrophages and human

fibroblasts. Also consistent with previous findings, the polymorphic

rhoptry kinase ROP16 was identified as a key player, with the

enhanced activation of JAK/STAT pathways by the Type I/III

allele of ROP16, relative to the Type II allele, appearing to be

conserved in chicken cells. It is highly likely that, as in mammalian

cells, ROP16 is able to directly phosphorylate and activate STATs

in infected chicken cells. Direct confirmation of this awaits the

development of reagents suitable for study of chicken STATs. Of

note is that while chicken homologues of IL-4 and its cognate

receptor IL-4Ra have been identified [49], chickens lack an

identifiable homologue of STAT6 [50], which is the primary

mediator of IL-4 signaling in mammalian cells. Chickens do

possess a homologue of mammalian STAT5, however, and this

might mediate IL-4 signaling in chicken cells; IL-4 has been

known to signal through STAT5 as well as STAT6 in human and

murine cells [51] and STAT5 has been shown to respond to

hematopoietic cytokine signaling in chicken cells [52]. We and

others have observed that STAT5 activation in infected HFFs and

murine macrophages is ROP16-dependent (data not shown;

Jeroen Saeij, personal communication), providing a possible

molecular mechanism by which ROP16 might be able to effect

IL-4-like signaling in chicken cells.

Our results are not inconsistent with the hypothesis that the

selection for particular parasite strains has been driven by the

particular requirements of some special host (or hosts) that were

historically critical to the evolution of Toxoplasma. In initiating this

study, we looked to ROP16 as a paradigmatic parasite effector.

Studies in murine and human cells showed that in one allelic form,

it is capable of driving sustained activation of STAT3 and STAT6,

with dramatic consequences for host inflammation, whereas in

another allelic form, this activity is much reduced (although not

entirely ablated [21]). Given the consequences of ROP16’s activity

towards the STATs, we reasoned that potent activity should be a

universally beneficial one as far as parasite survival. We therefore

sought to identify a host in which the ‘inactive’ Type II allele

might prove to be actually more active towards the STATs than

Table 6. Functional categories identified by DAVID as significantly enriched (FDR,25%) in the set of genes mapping to
chromosome VIIb.

Term Fold Enrichment FDR (%)

IPR000980:SH2 motif 17.10 0.021

SM00252:SH2 14.28 0.031

IPR001496:SOCS protein, C-terminal 37.05 0.14

SM00253:SOCS 30.95 0.17

Signal transduction inhibitor 40.01 2.21

GO:0009968,negative regulation of signal transduction 10.18 8.62

GO:0005576,extracellular region 2.54 9.44

GO:0010648,negative regulation of cell communication 9.63 9.98

GO:0031175,neuron projection development 7.70 17.65

GO:0030182,neuron differentiation 5.15 18.26

GO:0005578,proteinaceous extracellular matrix 4.63 18.37

GO:0031012,extracellular matrix 4.38 21.63

domain:SOCS box 84.84 22.75

gga04910:Insulin signaling pathway 5.41 22.90

Secreted 2.94 23.19

gga04630:Jak-STAT signaling pathway 5.26 24.42

doi:10.1371/journal.pone.0026369.t006

Table 5. Genome-wide QTL mapping of strain-specific host
transcriptional response in chicken embryonic fibroblasts.

Number of genes mapping

Chromosome p,0.05
p,0.05 Type II vs. III
fold-change $1.5

Ia 115 2

Ib 1 0

II 10 0

III 14 4

IV 1 0

V 0 0

VI 0 0

VIIa 304 39

VIIb 137 98

VIII 22 1

IX 0 0

X 70 16

XI 9 0

XII 6 0

Expression values of each gene were treated as phenotypes and a one-
dimensional genome scan to detect major QTL associated with these
expression values was performed. For each gene, the parasite genomic locus
corresponding to the maximum LOD score was determined. p-values were
calculated by permutation test and only genes with maximum LOD scores
meeting the p,0.05 cutoff were considered significant.
doi:10.1371/journal.pone.0026369.t005
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the Type I/III allele. Since relative differences in STAT-activating

capability might be predicted to vary with molecular properties

such as substrate binding affinity, we hypothesized that a relevant

host context in which the substrate (in this case, the STATs) was as

molecularly divergent as possible from murine/human substrates

might represent the different niche we hypothesized. Toxoplasma

is known to naturally infect only warm-blooded animals, i.e.,

mammals and birds. Hence, in terms of a molecularly divergent,

intracellular context that might reasonably have been a factor in

the evolution of Toxoplasma (i.e., in a host with significant

transmission capability), avian cells represent an outer limit of

difference compared to the exclusively mammalian systems

previously studied. Chicken STATs have significant evolutionary

distance from mammalian STATs and share only ,90% amino

acid identity with murine STATs [53,54], leaving open the

possibility that their binding interaction with ROP16 might differ

in a potentially meaningful way. Our results, however, showed

that Type III strains still induce a JAK/STAT enriched gene

signature in CEF cells, indicating that the Type I/III allele of

ROP16 is still more active than the Type II allele in this different

host phylum.

Similarities to strain-specificity between chicken and murine

responses were also observed for other Toxoplasma QTLs. For

example, we observed a significant difference in the ability of Type

II vs. Type III strains to elicit a pro-inflammatory signature

enriched in NF-kB-regulated genes, just as has been reported for

infection of mammalian cells [22,43]. NF-kB is conserved in

chickens, with ,70% identity to mammalian NF-kB [55].

Recently, Rosowski and colleagues identified the secreted

polymorphic effector GRA15, located on chromosome X, that

drives Type II-induced NF-kB activation in murine and human

cells and accounts for this characteristic Type II-infection

signature [22]. Consistent with this, many genes that were highly

expressed in Type II vs. Type III infection of chicken fibroblasts

and are known to be typically induced by NF-kB (e.g. CD83,

HHIP, and CCL4) were found to map to chromosome X. Although

we have not proven that this difference is in fact due to GRA15,

this seems highly likely and suggests that for at least two major,

polymorphic effectors, ROP16 and GRA15, and in at least the cell

types so far examined, allele-dependent function is conserved in

both mammals and avians, despite significant differences in the

substrates with which they interact. These findings are consistent

with other reports showing that virulence factors may play

conserved roles across species and indeed, across kingdoms; this

has been strikingly demonstrated for Pseudomonas aeruginosa

virulence, which relies on the same genetic determinants in an

Arabidopsis leaf infiltration model and a mouse full-thickness skin

burn model [56].

It remains possible that we have simply not identified the

relevant host species of interest and that, in that host species, we

would indeed observe an inversion of ROP16’s strain-specific

phenotype vis-à-vis the STATs and NF-kB. The available

evidence, however, is consistent with an alternative model of

strain selection wherein the Type II allele of ROP16 is weaker

with regard to STAT activation, across all host species. In this

scenario, the selection for the Type II allele would come from the

fact that inducing such strong and sustained activation of STATs

might not be beneficial to the parasite in all hosts. As previously,

STAT activation by ROP16 is associated with a driving of infected

cells towards a Th2 response [21,43]. It might be that in a host

already predisposed towards a Th2 response, additional suppres-

sion of inflammation may prove deleterious for the parasite. It is

known, for instance, that some laboratory strains of mice (e.g.

Balb/C) are Th2-inclined compared to others (e.g., C57Bl/6), in

part due to variations in MHC receptors and cytokine production

[57]; it might be the case that some important evolutionary host of

Toxoplasma in the wild, perhaps some rodent or avian species, is

already Th2-inclined. Hence, it might be to the parasite’s

advantage (i.e., transmission would be enhanced) if the infecting

strain of Toxoplasma did not further dampen inflammation by

Table 7. Comparison of genes significantly up-regulated by
Type I versus Type I Drop16 infection or Type III versus Type II
infection.

GENE SYMBOL
Fold Change,
I.I Drop16, 5 hpi

Fold Change,
III.II, 24 hpi

CCL17 21.2 399.6

CA2 8.2 25.7

--- 7.4

--- 4.1 16.2

CALCA 4.1

LOC424241 4.1

CXCR4 3.6

SOCS1 3.4 14.7

CISH 3.2 5.8

BMP2 3.1

DOK5 2.9 3.2

PPP1R3C 2.6 6.6

SERPINB2 2.6 6.2

EAF2 2.4 3.6

SOCS2 2.3 6.5

UGP2 2.2 3.6

RDH10 2.1 2.8

KRT14 2.1 2.9

NPTX2 2.0

--- 2.0 5.2

--- 1.9

--- 1.9

SOCS3 1.9 3.8

FST 1.9 4.6

CCL4 1.8

LOC395581 1.7

LOC422150 1.7

TNFRSF1B 1.6

WDFY2 1.6 4.6

PLK2 1.6

APPL2 1.6 3.2

SGK1 1.6

--- 1.6

--- 1.5 2.8

MEOX2 1.5 3.2

--- 1.5

SEMA3A 1.5 4.6

All genes identified as significantly up-regulated ($1.5 fold-change, p,0.05)
between chicken embryonic fibroblasts infected with Type I versus Type I
Drop16 parasites are shown here. Bold-face font indicates genes identified as
mapping to chromosome VIIb. Where more than one probe corresponded to a
given gene, the highest fold-change difference is shown.
doi:10.1371/journal.pone.0026369.t007
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strongly activating STAT3/6. Alternatively, the nature of other

infections that might co-exist with Toxoplasma in a given host

species might have demanded (i.e., selected) for a Toxoplasma strain

that pushes the immune response in a Th1 or Th2 direction. For

example, worm infections are associated with Th2 responses and

so whether a host species is generally infected with worms might

represent a significant variable in the optimal interaction of

Toxoplasma with that host.

The virulence and success of a pathogen such as Toxoplasma is

determined by both host and parasite factors. As such, a full

understanding of its pathogenesis and population biology must

take into account the possible interactions between these variables.

Toxoplasma affords a rich system for further exploration in this vein

as we learn more about polymorphic effectors such as ROP16 (the

parasite ‘variables’) and how these effectors modulate the outcome

of infection across the many different host contexts the parasite

encounters.
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