134 research outputs found

    Effect of acid pretreatment and the germination period on the composition and antioxidant activity of rice bean (Vigna umbellata)

    Get PDF
    This research evaluated effect of germination period and acid pretreatment on chemical composition and antioxidant activity of rice bean sprouts. Moisture, total phenolics, reducing sugar and B vitamins (thiamine, riboflavin, and niacin) content of steamed sprouts increased with increasing germination time (p ⩽ 0.05). Pretreatment with 1% (w/v) citric acid for 6 h significantly increased the total phenolic content. The 18-h-germinated rice beans showed the highest crude protein content, as determined using the Kjeldahl method. During germination, acid pretreatment led to a significant decrease in the intensity of the 76-kDa band. Germination caused a significant increase in radical scavenging activity and ferric reducing antioxidant power, especially in sprouts from citric acid-treated seeds. The antioxidant activities of the ethanolic extracts from both pretreated beans and the control were 1.3–1.6 times higher than those obtained from the water extracts. Major phenolics found in both 0-h and 18-h-germinated rice beans were catechin and rutin

    Streptomyces

    Get PDF
    Streptomyces is a Gram-positive bacterium, with a high guanine þ cytosine (G þ C) content, belonging to the family Streptomycetaceae and order Actinomycetales. It is found commonly in marine and fresh water, rhizosphere soil, compost, and vermicompost. Streptomyces plays an important role in the plant growth promotion (PGP), plant health promotion (crop protection), degradation of organic residues, and production of byproducts (secondary metabolites) of commercial interest in agriculture and medical fields. Streptomyces, in the rhizosphere and rhizoplane, help crops in enhancing shoot and root growth, grain and stover yield, biologic nitrogen fixation, solubilization of minerals (such as phosphorus and zinc), and biocontrol of insect pests and plant pathogens. There is a growing interest in the use of secondary metabolites produced by Streptomyces such as blasticidin-s, kusagamycin, streptomycin, oxytetracycline, validamycin, polyoxins, natamycin, actinovate, mycostop, abamectin/ avermectins, emamectin benzoate, polynactins and milbemycin for the control of insect pests and plant pathogens as these are highly specific, readily degradable, and less toxic to environment (Aggarwal et al., 2016). The PGP potential of Streptomyces is well documented in tomato, wheat, rice, bean, chickpea, pigeonpea, and pea. This chapter emphasizes the usefulness of Streptomyces in PGP, grain and stover yields, soil fertility, and plant health promotion

    Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge

    Full text link
    A novel actinomycete, designated PA3T, was isolated from an oil refinery wastewater treatment plant, located in Palos de la frontera, Huelva, Spain, and characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a distinct subclade in the Pseudonocardia tree together with Pseudonocardia asaccharolytica DSM 44247T. The chemotaxonomic properties of the isolate, for example, the presence of MK-8 (H4) as the predominant menaquinone and iso-C16:0 as the major fatty acid are consistent with its classification in the genus Pseudonocardia. DNA:DNA pairing experiments between the isolate and the type strain of P. asaccharolytica DSM 44247T showed that they belonged to separate genomic species. The two strains were readily distinguished using a combination of phenotypic properties. Consequently, it is proposed that isolate PA3T represents a novel species for which the name Pseudonocardia hispaniensis sp. nov. is proposed. The type strain is PA3T (= CCM 8391T = CECT 8030T).Cuesta Amat, G.; Soler Hernández, A.; Alonso Molina, JL.; Ruvira, M.; Lucena, T.; Arahal, D.; Goodfellow, M. (2013). Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek. 103(1):135-142. doi:10.1007/s10482-012-9792-1S1351421031Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Epsar-Generalitat Valenciana, España, p 21–36Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) Pseudonocardia mongoliensis sp. nov. and Pseudonocardia khuvsgulensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:747–756Arahal DR, Sánchez E, Macián MC, Garay E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family ‘‘Leuconostocaceae’’. Int Microbiol 11:33–39Auffret M, Labbé D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466Chen HH, Qin S, Li J, Zhang YQ, Xu LH, Jiang CL, Kim CJ, Li WJ (2009) Pseudonocardia endophytica sp. nov., isolated from pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 59:559–563De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y (2009) Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 59:1487–1491Gordon RE, Barnett DA, Handerhan JE, Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63Hamid ME, Minnikin DE, Goodfellow M, Ridell M (1993) Thin-layer chromatographic analysis of glycolipids and mycolic acids from Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. Zbl Bakt 279:354–367Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322Henssen A (1957) Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch Mikrobiol 26:373–414Huang,Y, Goodfellow M (2012) Genus Pseudonocardia Hennsen 1957, 408VP emend. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki KE, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 5, part B. Springer, New YorkHuang Y, Wang L, Lu Z, Hong L, Liu Z, Tan GYA, Goodfellow M (2002) Proposal to combine the genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of Pseudonocardia zijingensis sp. nov. Int J Syst Evol Microbiol 52:977–982Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Kaewkla O, Franco CMM (2010) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 60:2818–2822Kaewkla O, Franco CMM (2011) Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 61:742–746Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR (2006) Pseudonocardia tetrahydrofuranoxydans sp. nov. Int J Syst Evol Microbiol 56:1535–1538Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ (2011) Reassessment of the systematics of the suborder Pseudonocardineae: transfer of genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 61:1259–1264Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443Lechevalier MP, Stern AER, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes. Zbl Bakt Suppl 11:111–116Li J, Zhao GZ, Huang HY, Zhu WY, Lee JC, Kim CJ, Xu LH, Zhang LX, Li WJ (2010) Pseudonocardia rhizophila sp. nov., a novel actinomycete isolated from a rhizosphere soil. Antonie Van Leeuwenhoek 98:77–83Liu ZP, Wu JF, Liu ZH, Liu SJ (2006) Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 56:555–558Lucena T, Pascual J, Garay E, Arahal DR, Macián MC, Pujalte MJ (2010) Haliea mediterranea sp. nov., a new marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844–1848Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167MIDI (2008) Sherlock microbial identification system operating manual, version 6.1. MIDI Inc., NewarkMinnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241Nam S-W, Chun J, Kim S, Kim W, Zakrzewska-Czerwinska J, Goodfellow M (2003) Tsukamurella spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. Syst Appl Microbiol 26:367–375Okoh A, Ajisebutu S, Babalola G, Trejo-Hernandez MR (2001) Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int Microbiol 4:83–87Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58:2475–2478Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196Qin S, Su YY, Zhang YQ, Wang HB, Jiang CL, Xu LH, Li WJ (2008) Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 58:2086–2089Qin S, Zhu WY, Jiang JH, Klenk HP, Li J, Zhao GZ, Xu LH, Li WJ (2010) Pseudonocardia tropica sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 60:2524–2528Qin S, Xing K, Fei SM, Lin Q, Chen XM, Li WJ, Jiang JH (2011) Pseudonocardia sichuanensis sp. nov., a novel endophytic actinomycete isolated from the root of Jatropha curcus L. Antonie Van Leeuwenhoek 99:395–401Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701Reichert K, Lipski A, Pradella S, Stackebrandt E, Altendorf K (1998) Pseudonocardia asaccharolitica sp. nov. and Pseudonocardia sulfidoxidans sp. nov., two new dimethyl disulfide-degrading actinomycetes and emended description of the genus Pseudonocardia. Int J Syst Bacteriol 48:441–449Sakiyama Y, Thao NKN, Vinh HV, Giang NM, Miyadoh S, Hop DV, Ando K (2010) Pseudonocardia babensis sp. nov., isolated from plant litter. Int J Syst Evol Microbiol 60:2336–2340Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Tech Note 101:1–7Schäfer J, Busse HJ, Kämpfer P (2009) Pseudonocardia parietis sp. nov., from the indoor environment. Int J Syst Evol Microbiol 59:2449–2452Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of the actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94:21–33Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231Warwick S, Bowen T, McVeigh HP, Embley TM (1994) A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol 44:293–299Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology report on the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299Zhao GZ, Li J, Zhu WY, Li XP, Tian SZ, Zhao LX, Xu LH, Li WJ (2011a) Pseudonocadia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisiae annua L. Antonie Van Leeuwenhoek 100:35–42Zhao GZ, Li J, Huang HY, Zhu WY, Zhao LX, Tang SK, Xu LH, Li WJ (2011b) Pseudonocardia artemisiae sp. nov., isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol 61:1061–1065Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ, Kim CJ, Xu LH, Li WJ (2011c) Pseudonocardia kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int J Syst Evol Microbiol 61:2292–229

    Foam-Mat Freeze-Drying of Blueberry Juice by Using Trehalose-β-Lactoglobulin and Trehalose-Bovine Serum Albumin as Matrices

    Get PDF
    This study aimed to evaluate the effect of pure protein compounds and trehalose incorporated into blueberry juice for foam-mat freeze-drying on the foam and powder properties. Foam-mat freeze-drying (FMFD) of blueberry juice was tested at − 55 °C for 24 h. Matrices used were trehalose + β-lactoglobulin (T3BL1) and trehalose + bovine serum albumin (T3A1) and compared with maltodextrin + whey protein isolate (M3W1). Physicochemical properties of foam and powder, e.g., foam stability, foam density, moisture, rehydration time, color, particle morphology, total phenolic, and anthocyanins (total and individuals), were investigated. T3BL1 and T3A1 had more stable foam than M3W1. However, overrun of T3BL1 and T3A1 foamed were inferior to the M3W1 sample. The M3W1 sample recovered 79% powder (dry weight) and was superior to others. Rehydration time of powdered T3BL1 and T3A1, with bulk densities of 0.55–0.60 g cm−3, was the fastest (34–36 s). The blueberry powders of M3W1 showed more irregular particle size and shape, while the samples with trehalose and pure proteins generated particles of more uniform size with obvious pores. T3BL1 and T3A1 showed less redness (a*) values than the M3W1 product. All samples were considered pure red due to hue values < 90. M3W1 was superior in total phenolic content (TPC) and total monomeric anthocyanins (TMA) compared with both samples made with trehalose + β-lactoglobulin and trehalose+bovine serum albumin. Delphinidin-3-glucoside (Del3Gl) concentration was found to be higher in M3W1. Also, M3W1 had higher cyanidin-3-glucoside (Cyn3Gl) and malvidin-3-glucoside (Mal3Gl) concentration. M3W1 also prevented the degradation of these bioactive compounds better than the other FMFD samples. The use of pure proteins and trehalose as matrices in the FMFD process had little advantage compared with maltodextrin/whey protein isolate. Thus, maltodextrin/whey protein isolate seems an ideal matrix for the manufacture of FMFD blueberry

    Systematics and comparative genomics of members of the Streptomyces violaceoruber 16S rRNA gene clade

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    UTILIZATION OF RESPONSE SURFACE METHODOLOGY IN THE OPTIMIZATION OF ROSELLE ICE CREAM MAKING [Penggunaan Response Surface Methodology dalam Optimisasi Pembuatan Es Krim Rosella]

    No full text
    This research was carried out to develop a functional ice cream product with natural colorant derived from an optimum set of roselle calyces extract and citric acid concentrations. Although citric acid can improve red color stability of rosella, its addition is limited due to the acidic and bitter aftertaste it imparts. Response surface methodology (RSM) was employed to analyze the effect of roselle calyces extract and citric acid on physico-chemical characteristics and sensory acceptance of an ice cream. A central composite design consisting of two independent variables (roselle calyces extract and citric acid cocentrations) at five levels (-1.41421, -1, 0, +1, and +1.41421) with 13 runs (formulations) was prepared to establish the optimum set of variables. Higher concentration of roselle calyces extract significantly increased the total anthocyanin content and color acceptance, while decreased the ºHue and pH of the ice cream. Higher concentration of citric acid significantly increased the overrun and color acceptance, but decreased the viscosity, ºHue, pH, texture, taste acceptance, and overall acceptance of ice cream. The optimum scores of consumer sensory acceptance were met at 11.5% roselle calyces extract and 1.5% citric acid concentrations
    corecore