248 research outputs found

    Generalized Drude model: Unification of ballistic and diffusive electron transport

    Full text link
    For electron transport in parallel-plane semiconducting structures, a model is developed that unifies ballistic and diffusive transport and thus generalizes the Drude model. The unified model is valid for arbitrary magnitude of the mean free path and arbitrary shape of the conduction band edge profile. Universal formulas are obtained for the current-voltage characteristic in the nondegenerate case and for the zero-bias conductance in the degenerate case, which describe in a transparent manner the interplay of ballistic and diffusive transport. The semiclassical approach is adopted, but quantum corrections allowing for tunneling are included. Examples are considered, in particular the case of chains of grains in polycrystalline or microcrystalline semiconductors with grain size comparable to, or smaller than, the mean free path. Substantial deviations of the results of the unified model from those of the ballistic thermionic-emission model and of the drift-diffusion model are found. The formulation of the model is one-dimensional, but it is argued that its results should not differ substantially from those of a fully three-dimensional treatment.Comment: 14 pages, 5 figures, REVTEX file, to appear in J. Phys.: Condens. Matte

    Anomalous Drude Model

    Full text link
    A generalization of the Drude model is studied. On the one hand, the free motion of the particles is allowed to be sub- or superdiffusive; on the other hand, the distribution of the time delay between collisions is allowed to have a long tail and even a non-vanishing first moment. The collision averaged motion is either regular diffusive or L\'evy-flight like. The anomalous diffusion coefficients show complex scaling laws. The conductivity can be calculated in the diffusive regime. The model is of interest for the phenomenological study of electronic transport in quasicrystals.Comment: 4 pages, latex, 2 figures, to be published in Physical Review Letter

    Nanohelices as superlattices: Bloch oscillations and electric dipole transitions

    Get PDF
    Subjecting a nanohelix to a transverse electric field gives rise to superlattice behavior with tunable electronic properties. We theoretically investigate such a system and find Bloch oscillations and negative differential conductance when a longitudinal electric field (along the nanohelix axis) is also applied. Furthermore, we study dipole transitions across the transverse-electric-field-induced energy gap, which can be tuned to the eulogized terahertz frequency range by experimentally attainable external fields. We also reveal a photogalvanic effect by shining circularly polarized light onto our helical quantum wire.We acknowledge financial support from the CNRS and from the ANR under Grant No. ANR-14-CE26-0005 Q-MetaMat, as well as the EU H2020 RISE project CoExAN (Grant No. H2020-644076), EU FP7 ITN NOTEDEV (Grant No. FP7-607521), and the FP7 IRSES projects CANTOR (Grant No. FP7-612285), QOCaN (Grant No. FP7-316432), and InterNoM (Grant No. FP7-612624)

    The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing-receptor (CaSR) mutation:relevance to autosomal dominant hypocalcemia type 1 (ADH1)

    Get PDF
    Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum parathyroid hormone (PTH) concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalise the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells and the effect of NPS 2143 on their intracellular calcium responses determined by flow cytometry. NPS 2143 was also administered as a single intraperitoneal bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1, and improve the hypocalcemia associated with this disorder

    Effect of transition layers on the electromagnetic properties of composites containing conducting fibres

    Full text link
    The approach to calculating the effective dielectric and magnetic response in bounded composite materials is developed. The method is essentially based on the renormalisation of the dielectric matrix parameters to account for the surface polarisation and the displacement currents at the interfaces. This makes it possible the use of the effective medium theory developed for unbounded materials, where the spatially-dependent local dielectric constant and magnetic permeability are introduced. A detailed mathematical analysis is given for a dielectric layer having conducting fibres with in-plane positions. The surface effects are most essential at microwave frequencies in correspondence to the resonance excitation of fibres. In thin layers (having a thickness of the transition layer), the effective dielectric constant has a dispersion region at much higher frequencies compared to those for unbounded materials, exhibiting a strong dependence on the layer thickness. For the geometry considered, the effective magnetic permeability differs slightly from unity and corresponds to the renormalised matrix parameter. The magnetic effect is due entirely to the existence of the surface displacement currents.Comment: PDF, 33 pages, 10 figure

    Electrodynamics of Correlated Electron Materials

    Full text link
    We review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with dd- and ff-electrons as well as magnetic semiconductors. Optical inquiry into correlations in all these diverse systems is enabled by experimental access to the fundamental characteristics of an ensemble of electrons including their self-energy and kinetic energy. Steady-state spectroscopy carried out over a broad range of frequencies from microwaves to UV light and fast optics time-resolved techniques provide complimentary prospectives on correlations. Because the theoretical understanding of strong correlations is still evolving, the review is focused on the analysis of the universal trends that are emerging out of a large body of experimental data augmented where possible with insights from numerical studies.Comment: 78 pages, 55 figures, 984 reference

    Computational Modeling of Realistic Cell Membranes

    Get PDF
    Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Get PDF
    Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers

    Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles

    Get PDF
    We compare the performance of a typical hole transport layer for organic photovoltaics (OPVs), Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin film with a series of PEDOT:PSS layers doped with silver (Ag) nanoparticles (NPs) of various size distributions. These hybrid layers have attracted great attention as buffer layers in plasmonic OPVs, although there is no report up to date on their isolated performance. In the present study we prepared a series of PEDOT:PSS layers sandwiched between indium tin oxide (ITO) and gold (Au) electrodes. Ag NPs were deposited on top of the ITO by electron beam evaporation followed by spin coating of PEDOT:PSS. Electrical characterization performed in the dark showed linear resistive behavior for all the samples; lower resistance was observed for the hybrid ones. It was found that the resistivity of the samples decreases with increasing the particle's size. A substantial increase of the electric field between the ITO and the Au electrodes was seen through the formation of current paths through the Ag NPs. A striking observation is the slight increase in the slope of the current density versus voltage curves when measured under illumination for the case of the plasmonic layers, indicating that changes in the electric field in the vicinity of the NP due to plasmonic excitation is a non-vanishing factor
    corecore