119 research outputs found

    Optical Properties and Plasmonic Performance of Titanium Nitride

    Get PDF
    Titanium nitride (TiN) is one of the most well-established engineering materials nowadays. TiN can overcome most of the drawbacks of plasmonic metals due to its high electron conductivity and mobility, high melting point and due to the compatibility of its growth with Complementary Metal Oxide Semiconductor (CMOS) technology. In this work, we review the dielectric function spectra of TiN and we evaluate the plasmonic performance of TiN by calculating (i) the Surface Plasmon Polariton (SPP) dispersion relations and (ii) the Localized Surface Plasmon Resonance (LSPR) band of TiN nanoparticles, and we demonstrate a significant plasmonic performance of TiN

    Laser Annealing as a Platform for Plasmonic Nanostructuring

    Get PDF
    Nanoconstruction of metals is a significant challenge for the future manufacturing of plasmonic devices. Such a technology requires the development of ultra‐fast, high‐throughput and low cost fabrication schemes. Laser processing can be considered as such and can potentially represent an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. Specifically, laser nanostructuring of either thin metal films or ceramic/metal multilayers and composites can result on surface or subsurface plasmonic patterns, respectively, with many potential applications. In this chapter, the photo‐thermal processes involved in surface and subsurface nanostructuring are discussed and processes to develop functional plasmonic nanostructures with pre‐determined morphology are demonstrated. For the subsurface plasmonic conformations, the temperature gradients that are developed spatially across the metal/dielectric structure during the laser processing can be utilized. For the surface plasmonic nanoassembling, the ability to tune the laser\u27s wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency can be utilised, i.e. different optical absorption mechanisms that are size‐selective can be probed. Both processes can serve as a platform for stimulating further progress towards the engineering of large‐scale plasmonic devices

    Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films

    Get PDF
    We present that the ultra-violet emission of ZnO can be enhanced, as much as six-times its integral intensity, using an Al thin interlayer film between the Si substrate and ZnO thin film and a postfabrication laser annealing process. The laser annealing is a cold process that preserves the chemical state and integrity of the underlying aluminum layer, while it is essential for the improvement of the ZnO performance as a light emitter and leads to enhanced emission in the visible and in the ultraviolet spectral ranges. In all cases, the metal interlayer enhances the intensity of the emitted light, either through coupling of the surface plasmon that is excited at the Al/ZnO interface, in the case of light-emitting ZnO in the ultraviolet region, or by the increased back reflection from the Al layer, in the case of the visible emission. In order to evaluate the process and develop a solid understanding of the relevant physical phenomena, we investigated the effects of various metals as interlayers (Al, Ag, and Au), the metal interlayer thickness, and the incorporation of a dielectric spacer layer between Al and ZnO. Based on these experiments, Al emerged as the undisputable best choice of metal interlayers because of its compatibility with the laser annealing process, as well as due to its high optical reflectivity at 380 and 248 nm, which leads to the effective coupling with surface plasmons at the Al/ZnO interfaces at 380 nm and the secondary annealing of ZnO by the back-reflected 248 nm laser beam

    Embedded metal oxide plasmonics using local plasma oxidation of AZO for planar metasurfaces

    Get PDF
    New methods for achieving high‐quality conducting oxide metasurfaces are of great importance for a range of emerging applications from infrared thermal control coatings to epsilon‐near‐zero nonlinear optics. This work demonstrates the viability of plasma patterning as a technique to selectively and locally modulate the carrier density in planar Al‐doped ZnO (AZO) metasurfaces without any associated topographical surface profile. This technique stands in strong contrast to conventional physical patterning which results in nonplanar textured surfaces. The approach can open up a new route to form novel photonic devices with planar metasurfaces, for example, antireflective coatings and multi‐layer devices. To demonstrate the performance of the carrier‐modulated AZO metasurfaces, two types of devices are realized using the demonstrated plasma patterning. A metasurface optical solar reflector is shown to produce infrared emissivity equivalent to a conventional etched design. Second, a multiband metasurface is achieved by integrating a Au visible‐range metasurface on top of the planar AZO infrared metasurface. Independent control of spectral bands without significant cross‐talk between infrared and visible functionalities is achieved. Local carrier tuning of conducting oxide films offers a conceptually new approach for oxide‐based photonics and nanoelectronics and opens up new routes for integrated planar metasurfaces in optical technology

    Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing

    Get PDF
    High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10−3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10−4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes
    corecore