37 research outputs found

    Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Get PDF
    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm ismobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysismethod, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse.Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver inmaterial accumulation within the DWDS

    Building the basic configuration of compression refrigeration systems with the SYNTHSEP method

    No full text
    The SYNTHSEP method has been proposed as a bottom-up approach to build the basic configuration of energy conversion systems starting from elementary thermodynamic cycles. These elementary cycles, which are considered as the unit bricks forming the basic configuration of any energy conversion system, simply consist of the four fundamental thermodynamic processes (a compression, an expansion, a heating and a cooling). Processes of the same type can be shared between/among different cycles in the basic configuration of the system, according to its topology. In previous works by the same Authors, the SYNTHSEP method has been applied to the optimal synthesis and design of power generation systems (ORCs, steam cycles), the basic configuration of which was made of direct cycles (compression, heating, expansion, cooling). In this work it is shown conceptually how the SYNTHSEP method can be applied to compression refrigeration system as well, using reverse cycles (compression, cooling, expansion, heating) as the unit bricks for the synthesis of the basic configuration of the system. In particular, the focus is on the rules to reconcile the information on the topology of the basic configuration, indicating the processes that are shared between/among the cycles, with the information about the design parameters of the cycles
    corecore