66 research outputs found

    Climate drove the fire cycle and humans influenced fire occurrence in the East European boreal forest

    Get PDF
    Understanding long-term forest fire histories of boreal landscapes is instrumental for parameterizing climate-fire interactions and the role of humans affecting natural fire regimes. The eastern sections of the European boreal zone currently lack a network of annually resolved and centuries-long forest fire histories. To fill in this knowledge gap, we dendrochronologically reconstructed the 600-year fire history of a middle boreal pine-dominated landscape of the southern part of the Republic of Komi, Russia. We combined the reconstruction of fire cycle (FC) and fire occurrence with the data on the village establishment and climate proxies and discussed the relative contribution of climate versus human land use in shaping historic fire regimes. Over the 1340-1610 ce period, the territory had a FC of 66 years (with the 90% confidence envelope of 56.8 and 78.6 years). Fire activity increased during the 1620-1730 ce period, with the FC reaching 32 years (31.0-34.7 years). Between 1740-1950, the FC increased to 47 years (41.9-52.0). The most recent period, 1960-2010, marks FC's historic maximum, with the mean of 153 years (102.5-270.3). Establishment of the villages, often as small harbors on the Pechora River, was associated with a non-significant increase in fire occurrence in the sites nearest the villages (p = 0.07-0.20). We, however, observed a temporal association between village establishment and fire occurrence at the scale of the whole studied landscape. There was no positive association between the former and the FC. In fact, we documented a decline in the area burned, following the wave of village establishment during the second half of the 1600s and the first half of the 1700s. The lack of association between the dynamics of FC and the dates of village establishments, and the significant association between large fire years and the early and latewood pine chronologies, used as historic drought proxy, indirectly suggests that the climate was the primary control of the landscape-level FCs in the studied forests. Pine-dominated forests of the Komi Republic may hold a unique position as the ecosystem with the shortest history of human-related shifts in fire cycles across the European boreal region

    Vertical incisal disocclusion: etiopathogenesis, classification, clinical and morphological forms, principles of treatment (review of the literature)

    Get PDF
    The article provides an overview of published data relating to the issues of etiopathogenesis, classification, differences in clinical and morphological forms, as well as the principles of treatment of patients with vertical incisal disocclusion. Particular attention is paid to the combined (orthodontic and surgical) approach in the treatment of adult patients.В статье представлен обзор литературных данных, касающихся вопросов этиопатогенеза, классификации, различий клинико-морфологических форм, а также принципов лечения пациентов с вертикальной резцовой дизокклюзией. Особое внимание уделяется комбинированному (ортодонтическому и хирургическому) подходу в лечении взрослых пациентов

    Microfludic Device for Creating Ionic Strength Gradients over DNA Microarrays for Efficient DNA Melting Studies and Assay Development

    Get PDF
    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients

    Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management

    Get PDF
    The extreme 2018 hot drought that affected central and northern Europe led to the worst wildfire season in Sweden in over a century. The Ljusdal fire complex, the largest area burnt that year (8995 ha), offered a rare opportunity to quantify the combined impacts of wildfire and post-fire management on Scandinavian boreal forests. We present chamber measurements of soil CO2 and CH4 fluxes, soil microclimate and nutrient content from five Pinus sylvestris sites for the first growing season after the fire. We analysed the effects of three factors on forest soils: burn severity, salvage-logging and stand age. None of these caused significant differences in soil CH4 uptake. Soil respiration, however, declined significantly after a high-severity fire (complete tree mortality) but not after a low-severity fire (no tree mortality), despite substantial losses of the organic layer. Tree root respiration is thus key in determining post-fire soil CO2 emissions and may benefit, along with heterotrophic respiration, from the nutrient pulse after a low-severity fire. Salvage-logging after a high-severity fire had no significant effects on soil carbon fluxes, microclimate or nutrient content compared with leaving the dead trees standing, although differences are expected to emerge in the long term. In contrast, the impact of stand age was substantial: a young burnt stand experienced more extreme microclimate, lower soil nutrient supply and significantly lower soil respiration than a mature burnt stand, due to a thinner organic layer and the decade-long effects of a previous clear-cut and soil scarification. Disturbance history and burn severity are, therefore, important factors for predicting changes in the boreal forest carbon sink after wildfires. The presented short-term effects and ongoing monitoring will provide essential information for sustainable management strategies in response to the increasing risk of wildfire

    Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    Get PDF
    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 48C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by �40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases

    Climate warming disrupts mast seeding and its fitness benefits in European beech

    Get PDF
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Many plants benefit from synchronous year-to-year variation in seed production, called masting. Masting benefits plants because it increases the efficiency of pollination and satiates predators, which reduces seed loss. Here, using a 39-year-long dataset, we show that climate warming over recent decades has increased seed production of European beech but decreased the year-to-year variability of seed production and the reproductive synchrony among individuals. Consequently, the benefit that the plants gained from masting has declined. While climate warming was associated with increased reproductive effort, we demonstrate that less effective pollination and greater losses of seeds to predators offset any benefits to the plants. This shows that an apparently simple benefit of climate warming unravels because of complex ecological interactions. Our results indicate that in masting systems, the main beneficiaries of climate-driven increases in seed production are seed predators, not plants

    Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    No full text
    Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects
    corecore