228 research outputs found
Microbiological alterations in the conjunctiva of hot tub-soaking ophthalmologists (MACHO): a randomized double-blind clinical trial
Background: To determine if there is a difference in the quantity of microbial flora of the conjunctiva in individuals practicing head submersion (“dunkâ€) versus no head submersion (“no-dunkâ€) during hot tub use.
Methods: In this double-blind randomized clinical trial, healthy volunteers aged ≥ 18 years were recruited. Participants were randomized to head submersion versus no head submersion during a 15-minute hot tub soak. Study personnel, masked to the dunk or no-dunk group assignment, obtained conjunctival cultures before and immediately after hot tub use. De-identified specimens were submitted to the clinical microbiology laboratory for culture and analysis. The main outcome measure was the difference in the quantity of organisms cultured from the conjunctiva before and after hot tub exposure, as determined using a defined ordinal scale. A two-tailed Student’s t-test was performed to compare the total microbial colony counts between the two arms. Simpson’s diversity was used to measure the changes in organism diversity between the arms.
Results: Of 36 enrolled subjects, 19 were randomly assigned to the dunk and 17 were assigned to the no-dunk groups. Water samples obtained from all hot tubs were culture negative. Eleven of 19 eyes (58%) from the dunk group and eight of 17 eyes (47%) from the no-dunk group had negative conjunctival bacterial cultures before and after hot tub exposure. However, six of 19 eyes (32%) and four of 17 eyes (24%) of the dunk and no-dunk groups, respectively, were culture-positive after, but not before hot tub exposure. The quantity of organisms before and after hot tub exposure was not significantly different between the two arms (P = 0.12). However, the dunk group only showed a small increase in the quantity of organisms after as compared to before hot tub use (P = 0.03). None of the samples from subjects or hot tubs were culture-positive for Acanthamoeba.
Conclusion: Head submersion in a public hot tubs during a 15-minute soak does not appear to change conjunctival flora, as determined by culture plate yield
Galaxy And Mass Assembly (GAMA) : The mechanisms for quiescent galaxy formation at z<1
© 2016 The Authors. One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies.We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8Gyr, the quiescent population has grown more slowly in number density at high masses (M * > 10 11 M ⊙ ) than at intermediate masses (M * > 10 10.6 M ⊙ ). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times.At intermediatemasses (M * > 10 10.6 M ⊙ ), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ~ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z 10 11 M ⊙ ), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation
Galaxy And Mass Assembly (GAMA): bulge-disc decomposition of KiDS data in the nearby Universe
We derive single Sérsic fits and bulge-disc decompositions for 13 096 galaxies at redshifts z \u3c 0.08 in the GAMA II equatorial survey regions in the Kilo-Degree Survey (KiDS) g, r, and i bands. The surface brightness fitting is performed using the Bayesian two-dimensional profile fitting code PROFIT. We fit three models to each galaxy in each band independently with a fully automated Markov chain Monte Carlo analysis: a single Sérsic model, a Sérsic plus exponential and a point source plus exponential. After fitting the galaxies, we perform model selection and flag galaxies for which none of our models are appropriate (mainly mergers/Irregular galaxies). The fit quality is assessed by visual inspections, comparison to previous works, comparison of independent fits of galaxies in the overlap regions between KiDS tiles and bespoke simulations. The latter two are also used for a detailed investigation of systematic error sources. We find that our fit results are robust across various galaxy types and image qualities with minimal biases. Errors given by the MCMC underestimate the true errors typically by factors 2–3. Automated model selection criteria are accurate to \u3e90 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e\u3e90 per cent\u3e90 per cent as calibrated by visual inspection of a subsample of galaxies. We also present g−r component colours and the corresponding colour–magnitude diagram, consistent with previous works despite our increased fit flexibility. Such reliable structural parameters for the components of a diverse sample of galaxies across multiple bands will be integral to various studies of galaxy properties and evolution. All results are integrated into the GAMA database
Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information
KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe
Galaxy and Mass Assembly (GAMA): The stellar mass budget of galaxy spheroids and discs
We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disc component populations down to a lower mass limit of log(M*/M⊙) = 8. We find that the spheroid/disc mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (ρspheroid = 1.24 ± 0.49 × 108 M⊙ Mpc −3h0.7) and discs (ρdisc = 1.20 ± 0.45 × 108 M⊙ Mpc −3h0.7), which translates to approximately 50 per cent of the local stellar mass density in spheroids and 48 per cent in discs. The remaining stellar mass is found in the dwarf ‘little blue spheroid’ class, which is not obviously similar in structure to either classical spheroid or disc populations. We also examine the variation of component mass ratios across galaxy mass and group halo mass regimes, finding the transition from spheroid to disc mass dominance occurs near galaxy stellar mass ∼1011 M⊙ and group halo mass ∼1012.5 M⊙h−1. We further quantify the variation in spheroid-to-total mass ratio with group halo mass for central and satellite populations as well as the radial variation of this ratio within groups
Galaxy And Mass Assembly (GAMA): extended intragroup light in a group at <i>z</i> = 0.2 from deep Hyper Suprime-Cam images
We present a pilot study to assess the potential of Hyper Suprime-Cam Public Data Release 2 (HSC-PDR2) images for the analysis of extended faint structures within groups of galaxies. We examine the intragroup light (IGL) of the group 400138 (Mdyn = 1.3 ± 0.5 × 1013 M⊙, z ∼ 0.2) from the Galaxy And Mass Assembly (GAMA) survey using Hyper Suprime-Cam Subaru Strategic Program Public Data Release 2 (HSC-SSP PDR2) images in g, r, and i bands. We present the most extended IGL measurement to date, reaching down to μlimg=30.76 mag arcsec−2 (3σ; 10 × 10 arcsec2) at a semimajor axis of 275 kpc. The IGL shows mean colour values of g − i = 0.92, g − r = 0.60, and r − i = 0.32 (±0.01). The IGL stellar populations are younger (2–2.5 Gyr) and less metal rich ([Fe/H] ∼ −0.4) than those of the host group galaxies. We find a range of IGL fractions as a function of total group luminosity of ∼2−36 per cent depending on the definition of IGL, with larger fractions the bluer the observation wavelength. The early-type to late-type galaxy ratio suggests that 400138 is a more evolved group, dominated by early-type galaxies, and the IGL fraction agrees with that of other similarly evolved groups. These results are consistent with tidal stripping of the outer parts of Milky Way-like galaxies as the main driver of the IGL build-up. This is supported by the detection of substructure in the IGL towards the galaxy member 1660615 suggesting a recent interaction (<1 Gyr ago) of that galaxy with the core of the group
Galaxy And Mass Assembly (GAMA): extended intragroup light in a group at z = 0.2 from deep Hyper Suprime-Cam images
We present a pilot study to assess the potential of Hyper Suprime-Cam Public Data Release 2 (HSC-PDR2) images for the analysis of extended faint structures within groups of galaxies. We examine the intragroup light (IGL) of the group 400138 (Mdyn = 1.3 ± 0.5 × 1013 M⊙, z ∼ 0.2) from the Galaxy And Mass Assembly (GAMA) survey using Hyper Suprime-Cam Subaru Strategic Program Public Data Release 2 (HSC-SSP PDR2) images in g, r, and i bands. We present the most extended IGL measurement to date, reaching down to μglim=30.76 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eμlimg=30.76μglim=30.76 mag arcsec−2 (3σ; 10 × 10 arcsec2) at a semimajor axis of 275 kpc. The IGL shows mean colour values of g − i = 0.92, g − r = 0.60, and r − i = 0.32 (±0.01). The IGL stellar populations are younger (2–2.5 Gyr) and less metal rich ([Fe/H] ∼ −0.4) than those of the host group galaxies. We find a range of IGL fractions as a function of total group luminosity of ∼2−36 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼2−36 per cent∼2−36 per cent depending on the definition of IGL, with larger fractions the bluer the observation wavelength. The early-type to late-type galaxy ratio suggests that 400138 is a more evolved group, dominated by early-type galaxies, and the IGL fraction agrees with that of other similarly evolved groups. These results are consistent with tidal stripping of the outer parts of Milky Way-like galaxies as the main driver of the IGL build-up. This is supported by the detection of substructure in the IGL towards the galaxy member 1660615 suggesting a recent interaction (\u3c1 Gyr ago) of that galaxy with the core of the group
Galaxy and Mass Assembly (GAMA): merging galaxies and their properties
We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with −23 < Mr < −17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s−1 Mpc−1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr−1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10−4 Mpc−3 Gyr−1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (−23 < Mr < −20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ∼ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to ‘harassment’ in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g
- …