58 research outputs found

    Pseudo-Synesthesia through Reading Books with Colored Letters

    Get PDF
    Background Synesthesia is a phenomenon where a stimulus produces consistent extraordinary subjective experiences. A relatively common type of synesthesia involves perception of color when viewing letters (e.g. the letter ‘a’ always appears as light blue). In this study, we examine whether traits typically regarded as markers of synesthesia can be acquired by simply reading in color. Methodology/Principal Findings Non-synesthetes were given specially prepared colored books to read. A modified Stroop task was administered before and after reading. A perceptual crowding task was administered after reading. Reading one book (>49,000 words) was sufficient to induce effects regarded as behavioral markers for synesthesia. The results of the Stroop tasks indicate that it is possible to learn letter-color associations through reading in color (F(1, 14) = 5.85, p = .030). Furthermore, Stroop effects correlated with subjective reports about experiencing letters in color (r(13) = 0.51, p = .05). The frequency of viewing letters is related to the level of association as seen by the difference in the Stroop effect size between upper- and lower-case letters (t(14) = 2.79, p = .014) and in a subgroup of participants whose Stroop effects increased as they continued to read in color. Readers did not show significant performance advantages on the crowding task compared to controls. Acknowledging the many differences between trainees and synesthetes, results suggest that it may be possible to acquire a subset of synesthetic behavioral traits in adulthood through training. Conclusion/Significance To our knowledge, this is the first evidence of acquiring letter-color associations through reading in color. Reading in color appears to be a promising avenue in which we may explore the differences and similarities between synesthetes and non-synesthetes. Additionally, reading in color is a plausible method for a long-term ‘synesthetic’ training program

    Quadrupedal movement training improves markers of cognition and joint repositioning

    Get PDF
    Introduction - Exercise, and in particular balance and coordination related activities such as dance, appear to have positive effects on cognitive function, as well as neurodegenerative conditions such as dementia and Parkinson’s disease. Quadrupedal gait training is a movement system requiring coordination of all four limbs that has previously been associated with cognitive development in children. There is currently little research into the effect of complex QDP movements on cognitive function in adults. Purpose - To determine the effects of a novel four-week quadrupedal gait training programme on markers of cognitive function and joint reposition sense in healthy adults. Methods - Twenty-two physically active sports science students (15 male and 7 female) were divided into two groups: a training group (TG) and a control group (CG). All participants completed the Wisconsin Card Sorting Task (WCST) and were tested for joint reposition sense before and after a four-week intervention, during which time the TG completed a series of progressive and challenging quadrupedal movement training sessions. Results - Participants in the TG showed significant improvements in the WCST, with improvements in perseverative errors, non-perseverative errors, and conceptual level response. This improvement was not found in the CG. Joint reposition sense also improved for the TG, but only at 20 degrees of shoulder flexion. Conclusions - Performance of a novel, progressive, and challenging task, requiring the coordination of all 4 limbs, has a beneficial impact on cognitive flexibility, and in joint reposition sense, although only at the specific joint angle directly targeted by the training. The findings are consistent with other studies showing improvements in executive function and joint reposition sense following physical activity

    Gaze fixation improves the stability of expert juggling

    Get PDF
    Novice and expert jugglers employ different visuomotor strategies: whereas novices look at the balls around their zeniths, experts tend to fixate their gaze at a central location within the pattern (so-called gaze-through). A gaze-through strategy may reflect visuomotor parsimony, i.e., the use of simpler visuomotor (oculomotor and/or attentional) strategies as afforded by superior tossing accuracy and error corrections. In addition, the more stable gaze during a gaze-through strategy may result in more accurate movement planning by providing a stable base for gaze-centered neural coding of ball motion and movement plans or for shifts in attention. To determine whether a stable gaze might indeed have such beneficial effects on juggling, we examined juggling variability during 3-ball cascade juggling with and without constrained gaze fixation (at various depths) in expert performers (n = 5). Novice jugglers were included (n = 5) for comparison, even though our predictions pertained specifically to expert juggling. We indeed observed that experts, but not novices, juggled significantly less variable when fixating, compared to unconstrained viewing. Thus, while visuomotor parsimony might still contribute to the emergence of a gaze-through strategy, this study highlights an additional role for improved movement planning. This role may be engendered by gaze-centered coding and/or attentional control mechanisms in the brain

    Working Memory Training Using Mental Calculation Impacts Regional Gray Matter of the Frontal and Parietal Regions

    Get PDF
    Training working memory (WM) improves performance on untrained cognitive tasks and alters functional activity. However, WM training's effects on gray matter morphology and a wide range of cognitive tasks are still unknown. We investigated this issue using voxel-based morphometry (VBM), various psychological measures, such as non-trained WM tasks and a creativity task, and intensive adaptive training of WM using mental calculations (IATWMMC), all of which are typical WM tasks. IATWMMC was associated with reduced regional gray matter volume in the bilateral fronto-parietal regions and the left superior temporal gyrus. It improved verbal letter span and complex arithmetic ability, but deteriorated creativity. These results confirm the training-induced plasticity in psychological mechanisms and the plasticity of gray matter structures in regions that have been assumed to be under strong genetic control

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Meditation and cognitive ageing: The role of mindfulness meditation in building cognitive reserve

    Get PDF
    Mindfulness-related meditation practices engage various cognitive skills including the ability to focus and sustain attention, which in itself requires several interacting attentional sub-functions. There is increasing behavioural and neuroscientific evidence that mindfulness meditation improves these functions and associated neural processes. More so than other cognitive training programmes, the effects of meditation appear to generalise to other cognitive tasks, thus demonstrating far transfer effects. As these attentional functions have been linked to age-related cognitive decline, there is growing interest in the question whether meditation can slow-down or even prevent such decline. The cognitive reserve hypothesis builds on evidence that various lifestyle factors can lead to better cognitive performance in older age than would be predicted by the existing degree of brain pathology. We argue that mindfulness meditation, as a combination of brain network and brain state training, may increase cognitive reserve capacity and may mitigate age-related declines in cognitive functions. We consider available direct and indirect evidence from the perspective of cognitive reserve theory. The limited available evidence suggests that MM may enhance cognitive reserve capacity directly through the repeated activation of attentional functions and of the multiple demand system and indirectly through the improvement of physiological mechanisms associated with stress and immune function. The article concludes with outlining research strategies for addressing underlying empirical questions in more substantial ways

    Studying neuroanatomy using MRI

    Full text link
    corecore