31 research outputs found

    Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6)

    Get PDF
    Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l.) during the Cloud and Aerosol Characterization Experiment (CLACE 6) in February and March 2007. During mixed phase cloud events ice crystals from 5–20 micro m were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI). During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR) were analyzed for size and composition by the two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT) and a commercial Aerosol Time-of-Flight Mass Spectrometer (ATOFMS, TSI Model 3800). During CLACE 6 the SPLAT instrument characterized 355 individual IR that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 IR. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS) and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094). The measurements showed that mineral dust was strongly enhanced in the ice particle residues. Close to all of the SPLAT spectra from ice residues did contain signatures from mineral compounds, albeit connected with varying amounts of soluble compounds. Similarly, close to all of the ATOFMS IR spectra show a mineral or metallic component. Pure sulfate and nitrate containing particles were depleted in the ice residues. Sulfate and nitrate was found to dominate the droplet residues (~90% of the particles). The results from the two different single particle mass spectrometers were generally in agreement. Differences in the results originate from several causes, such as the different wavelength of the desorption and ionisation lasers and different size-dependent particle detection efficiencies

    ClNO2 and nitrate formation via N2O5 uptake to particles: Derivation of N2O5 uptake coefficients from ambient datasets

    Get PDF
    Oral presentation abstract given at EGU General Assembly 2015.We present estimates of the uptake coefficient of N2O5 using ambient measurements of the trace gases N2O5 and ClNO2 and particle composition and surface area at the Kleiner Feldberg observatory, near Frankfurt, SW Germany, during the PARADE campaign (summer 2011). Three methods used to extract gamma(N2O5) from the datasets were found to be in reasonable agreement, generating values between 0.001 and 0.4. Gamma (N2O5) displayed a significant dependence on relative humidity (RH), the largest values obtained, as expected, at high RH. No significant dependence of gamma(N2O5) on particle organic content or sulphate-to-organic ratio was observed. The variability in gamma(N2O5) is however large, indicating that humidity is not the sole factor determining the uptake coefficient. There is also an indication that the yield of ClNO2 with respect to N2O5 uptake is larger with lower concentrations of PM1 total organics. Our results will be compared to existing uptake coefficients from laboratory studies and those derived from field observations.Max Planck Societ

    Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments

    No full text
    The role of aerosolized SARS-CoV-2 viruses in airborne transmission of COVID-19 is debated. The transmitting aerosol particles are generated through the breathing and vocalization by infectious subjects. Some authors state that this represents the dominant route of spreading, while others dismiss the option. Public health organizations generally categorize it as a secondary transmission pathway. Here we present a simple, easy-to-use spreadsheet model to estimate the infection risk for different indoor environments, constrained by published data on human aerosol emissions, SARS-CoV-2 viral loads, infective dose and other parameters. We evaluate typical indoor settings such as an office, a classroom, a choir practice room and reception/party environments. These are examples, and the reader is invited to use the algorithm for alternative situations and assumptions. Our results suggest that aerosols from highly infective subjects can effectively transmit COVID-19 in indoor environments. This “highly infective” category represents approximately twenty percent of the patients tested positive for SARS-CoV-2. We find that “super infective” subjects, representing the top five to ten percent of positive-tested ones, plus an unknown fraction of less, but still highly infective, high aerosol-emitting subjects, may cause COVID-19 clusters (>10 infections), e.g. in classrooms, during choir singing and at receptions. The highly infective ones also risk causing such events at parties, for example. In general, active room ventilation and the ubiquitous wearing of face masks (i.e. by all subjects) may reduce the individual infection risk by a factor of five to ten, similar to high-volume HEPA air filtering. The most effective mitigation measure studied is the use of high-quality masks, which can drastically reduce the indoor infection risk through aerosols
    corecore