459 research outputs found
The Role of I Region Gene Products in Macrophage - T Lymphocyte Interaction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73965/1/j.1600-065X.1978.tb00400.x.pd
Transgenic Bcl-3 slows T cell proliferation
Immunological adjuvants, such as bacterial LPS, increase the mRNA levels of the IkB-related NF-κB transcriptional transactivator, Bcl-3, in activated T cells. Adjuvants also increase the life expectancy of activated T cells, as does over-expression of Bcl-3, suggesting that Bcl-3 is part of the pathway whereby adjuvants affect T cell lifespans. However, previous reports, confirmed here, show that adjuvants also increase the life expectancies of Bcl-3-deficient T cells, making Bcl-3’s role and effects in adjuvant-induced survival uncertain. To investigate the functions of Bcl-3 further, here we confirm the adjuvant-induced expression of Bcl-3 mRNA and show Bcl-3 induction at the protein level. Bcl-3 was expressed in mice via a transgene driven by the human CD2 promoter. Like other protective events, over-expression of Bcl-3 slows T cell activation very early in T cell responses to antigen, both in vitro and in vivo. This property was intrinsic to the T cells over-expressing the Bcl-3 and did not require Bcl-3 expression by other cells such as antigen-presenting cells
TGF-β in tolerance, development and regulation of immunity
AbstractThe TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance
Biosecurity and Vector Behaviour: Evaluating the Potential Threat Posed by Anglers and Canoeists as Pathways for the Spread of Invasive Non-Native Species and Pathogens
Invasive non-native species (INNS) endanger native biodiversity and are a major economic problem. The management of pathways to prevent their introduction and establishment is a key target in the Convention on Biological Diversity's Aichi biodiversity targets for 2020. Freshwater environments are particularly susceptible to invasions as they are exposed to multiple introduction pathways, including non-native fish stocking and the release of boat ballast water. Since many freshwater INNS and aquatic pathogens can survive for several days in damp environments, there is potential for transport between water catchments on the equipment used by recreational anglers and canoeists. To quantify this biosecurity risk, we conducted an online questionnaire with 960 anglers and 599 canoeists to investigate their locations of activity, equipment used, and how frequently equipment was cleaned and/or dried after use. Anglers were also asked about their use and disposal of live bait. Our results indicate that 64% of anglers and 78.5% of canoeists use their equipment/boat in more than one catchment within a fortnight, the survival time of many of the INNS and pathogens considered in this study and that 12% of anglers and 50% of canoeists do so without either cleaning or drying their kit between uses. Furthermore, 8% of anglers and 28% of canoeists had used their equipment overseas without cleaning or drying it after each use which could facilitate both the introduction and secondary spread of INNS in the UK. Our results provide a baseline against which to evaluate the effectiveness of future biosecurity awareness campaigns, and identify groups to target with biosecurity awareness information. Our results also indicate that the biosecurity practices of these groups must improve to reduce the likelihood of inadvertently spreading INNS and pathogens through these activities
Indistinguishable Landscapes of Meiotic DNA Breaks in rad50+ and rad50S Strains of Fission Yeast Revealed by a Novel rad50+ Recombination Intermediate
The fission yeast Schizosaccharomyces pombe Rec12 protein, the homolog of Spo11 in other organisms, initiates meiotic recombination by creating DNA double-strand breaks (DSBs) and becoming covalently linked to the DNA ends of the break. This protein–DNA linkage has previously been detected only in mutants such as rad50S in which break repair is impeded and DSBs accumulate. In the budding yeast Saccharomyces cerevisiae, the DSB distribution in a rad50S mutant is markedly different from that in wild-type (RAD50) meiosis, and it was suggested that this might also be true for other organisms. Here, we show that we can detect Rec12-DNA linkages in Sc. pombe rad50+ cells, which are proficient for DSB repair. In contrast to the results from Sa. cerevisiae, genome-wide microarray analysis of Rec12-DNA reveals indistinguishable meiotic DSB distributions in rad50+ and rad50S strains of Sc. pombe. These results confirm our earlier findings describing the occurrence of widely spaced DSBs primarily in large intergenic regions of DNA and demonstrate the relevance and usefulness of fission yeast studies employing rad50S. We propose that the differential behavior of rad50S strains reflects a major difference in DSB regulation between the two species—specifically, the requirement for the Rad50-containing complex for DSB formation in budding yeast but not in fission yeast. Use of rad50S and related mutations may be a useful method for DSB analysis in other species
The Future of Psychopharmacological Enhancements: Expectations and Policies
The hopes and fears expressed in the debate on human enhancement are not always based on a realistic assessment of the expected possibilities. Discussions about extreme scenarios may at times obscure the ethical and policy issues that are relevant today. This paper aims to contribute to an adequate and ethically sound societal response to actual current developments. After a brief outline of the ethical debate concerning neuro-enhancement, it describes the current state of the art in psychopharmacological science and current uses of psychopharmacological enhancement, as well as the prospects for the near future. It then identifies ethical issues regarding psychopharmacological enhancements that require attention from policymakers, both on the professional and on the governmental level. These concern enhancement research, the gradual expansion of medical categories, off-label prescription and responsibility of doctors, and accessibility of enhancers on the Internet. It is concluded that further discussion on the advantages and drawbacks of enhancers on a collective social level is still needed
Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes
The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control
- …