80 research outputs found

    On the causes of mid-Pliocene warmth and polar amplification

    Get PDF
    The mid-Pliocene (~ 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to ~ 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes

    Modelling the enigmatic Late Pliocene Glacial Event: Marine Isotope Stage M2

    Get PDF
    The Pliocene Epoch (5.2 to 2.58Ma) has often been targeted to investigate the nature ofwarmclimates. However, climate records for the Pliocene exhibit significant variability and show intervals that apparently experienced a cooler than modern climate. Marine Isotope Stage (MIS) M2 (~3.3 Ma) is a globally recognisable cooling event that disturbs an otherwise relatively (compared to present-day) warm background climate state. It remains unclear whether this event corresponds to significant ice sheet build-up in the Northern and Southern Hemisphere. Estimates of sea level for this interval vary, and range from modern values to estimates of 65 m sea level fall with respect to present day. Here we implement plausibleM2 ice sheet configurations into a coupled atmosphere–ocean climate model to test the hypothesis that larger-than-modern ice sheet configurations may have existed at M2. Climate model results are compared with proxy climate data available for M2 to assess the plausibility of each ice sheet configuration. Whilst the outcomes of our data/model comparisons are not in all cases straight forward to interpret, there is little indication that results from model simulations in which significant ice masses have been prescribed in the Northern Hemisphere are incompatible with proxy data from the North Atlantic, Northeast Arctic Russia, North Africa and the Southern Ocean. Therefore, our model results do not preclude thepossibilityof the existenceof larger icemasses duringM2 in the Northern or SouthernHemisphere. Specifically they are not able to discount the possibility of significant icemasses in the Northern Hemisphere during the M2 event, consistent with a global sea-level fall of between 40 m and 60 m. This study highlights the general need for more focused and coordinated data generation in the future to improve the coverage and consistency in proxy records for M2, which will allow these and future M2 sensitivity tests to be interrogated further

    Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project

    Get PDF
    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5

    Fossil datums of Late Neogene sediments from the Southwest Pacific Ocean

    No full text
    The assumption of synchrony of first and last occurrences of fossil taxa can be tested using graphic correlation procedures which, by allowing measured stratigraphic sections to be compared on a common depth scale, make it possible to develop a correlation model which integrates information from a number of cores. The strategy of the test presented here is to use a graphic correlation model that is based on data from the Atlantic (Deep Sea Drilling Project (DSDP) sites 502, 516A) and north Pacific (DSDP site 577A) as a basis for determining to what extent fossil datums in the southwest Pacific are synchronous. First and last occurrences of Pliocene calcareous nannofossils and planktonic foraminifers have been compared in five DSDP cores from the southwest Pacific ocean (sites 586, 587, 588, 590A, and 592). All cores were recovered using hydraulic piston coring technology, which assures the best recovery and minimal disturbance. Most of these cores contain abundant, well-preserved foraminifers and nannofossils, as well as a partial record of many of the expected magnetic polarity reversals in this part of the section. To assure taxonomic consistency, all taxonomic identifications were made by the author. Graphic correlation of this data set suggests that several important biostratigraphic markers are highly diachronous. For example, this study confirms that Globorotalia truncatulinoides first occurs at approximately 2.4 Ma between 20° and 35° south latitude in the southwest Pacific, approximately 0.5 m.y. earlier than it is found elsewhere in the Atlantic and Pacific. Other datums, such as the last occurrence of Discoaster brouweri, are essentially synchronous. These findings suggest that biostratigraphic models based on the assumption of synchrony of first and last occurrences of fossil taxa may be incorrect. Biostratigraphic models created with the Graphic Correlation method offer an opportunity to examine the biogeographic dimensions of origination, migration, and extinction of planktonic taxa

    The Yorktown Formation: Improved Stratigraphy, Chronology, and Paleoclimate Interpretations from the U.S. Mid-Atlantic Coastal Plain

    No full text
    The Yorktown Formation records paleoclimate conditions along the mid-Atlantic Coastal Plain during the mid-Piacenzian Warm Period (3.264 to 3.025 Ma), a climate interval of the Pliocene in some ways analogous to near future climate projections. To gain insight into potential near future changes, we investigated Yorktown Formation outcrops and cores in southeastern Virginia, refining the stratigraphic framework. We analyzed 485 samples for alkenone-based sea surface temperature (SST) and productivity estimates from the Holland and Dory cores, an outcrop at Morgarts Beach, Virginia, and the lectostratotype of the Yorktown Formation at Rushmere, Virginia, and analyzed planktonic foraminferal assemblage data from the type section. Using the structure of the SST record, we improved the chronology of the Yorktown Formation by establishing the maximum age ranges of the Rushmere (3.3–3.2 Ma) and Morgarts Beach (3.2–3.15 Ma) Members. SST values for these members average ~26 °C, corroborating existing sclerochronological data. Increasing planktonic foraminifer abundance, productivity, and species diversity parallel increasing SST over the MIS M2/M1 transition. These records constitute the greatest temporal concentration of paleoecological estimates within the Yorktown Formation, aiding our understanding of western North Atlantic temperature patterns, seasonality and ocean circulation during this interval. We provide a chronologic framework for future studies analyzing ecological responses to profound climate change
    corecore