78 research outputs found

    Insinuating electronics in the brain

    Get PDF
    AbstractThere is an expanding interface between electronic engineering and neurosurgery. Rapid advances in microelectronics and materials science, driven largely by consumer demand, are inspiring and accelerating development of a new generation of diagnostic, therapeutic, and prosthetic devices for implantation in the nervous system. This paper reviews some of the basic science underpinning their development and outlines some opportunities and challenges for their use in neurosurgery

    Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers

    Full text link
    Neuritogenesis, neuronal polarity formation, and maturation of axons and dendrites are strongly influenced by both biochemical and topographical extracellular components. The aim of this study was to elucidate the effects of polylactic acid electrospun fiber topography on primary motor neuron development, because regeneration of motor axons is extremely limited in the central nervous system and could potentially benefit from the implementation of a synthetic scaffold to encourage regrowth. In this analysis, we found that both aligned and randomly oriented submicron fibers significantly accelerated the processes of neuritogenesis and polarity formation of individual cultured motor neurons compared to flat polymer films and glass controls, likely due to restricted lamellipodia formation observed on fibers. In contrast, dendritic maturation and soma spreading were inhibited on fiber substrates after 2 days in vitro . This study is the first to examine the effects of electrospun fiber topography on motor neuron neuritogenesis and polarity formation. Aligned nanofibers were shown to affect the directionality and timing of motor neuron development, providing further evidence for the effective use of electrospun scaffolds in neural regeneration applications. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 589–603, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77438/1/20792_ftp.pd

    A closer look at neuron interaction with track-etched microporous membranes

    Get PDF
    Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 µm to 5 µm). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges – such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures

    Nanoscale surface topography reshapes neuronal growth in culture

    Get PDF
    International audienceNeurons are sensitive to topographical cues provided either by in vivo or in vitro environments on the micrometric scale. We have explored the role of randomly distributed silicon nanopillars on primary hippocampal neurite elongation and axonal differentiation. We observed that neurons adhere on the upper part of nanopillars with a typical distance between adhesion points of about 500 nm. These neurons produce fewer neurites, elongate faster, and differentiate an axon earlier than those grown on flat silicon surfaces. Moreover, when confronted with a differential surface topography, neurons specify an axon preferentially on nanopillars. As a whole, these results highlight the influence of the physical environment in many aspects of neuronal growth

    Can hippocampal neurites and growth cones climb over obstacles?

    Get PDF
    Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 \ub5m wide, with 4 \ub5m period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles

    Abdul-Karim et al. IEEE Trans. Image Processing MS Word XP 1 Automatic Selection of Parameters for Vessel/Neurite Segmentation Algorithms

    No full text
    Abstract — An automated method is presented for selecting optimal parameter settings for vessel/neurite segmentation algorithms using the minimum description length principle and a recursive random search algorithm. It trades off a probabilistic measure of image-content coverage, against its conciseness. It enables non-expert users to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability of the segmentation algorithm, and delivering higher morphometric accuracy. It enables adaptation of parameters across batches of images. It simplifies the user interface to just one optional parameter, and reduces the cost of technical support. Finally, the method is modular, extensible, and amenable to parallel computation. The method is applied to 223 images of human retinas and cultured neurons, from four different sources, using a single segmentation algorithm with 8 parameters. Improvements in segmentation quality compared to default settings using 1000 iterations ranged from 4.7 – 21%. Paired t-tests showed that improvements are statistically significant (p < 0.0005). Most of the improvement occurred in the first 44 iterations. Improvements in descriptio
    corecore