21 research outputs found

    Melodic expectations in 5- to 6-year-old children

    Get PDF
    It has been argued that children implicitly acquire the rules relating to the structure of music in their environment, using domain-general mechanisms such as statistical learning. Closely linked to statistical learning is the ability to form expectations about future events. Whether children as young as 5 years can make use of such internalized regularities to form expectations about the next note in a melody is still unclear. The possible effect of the home musical environment on the strength of musical expectations has also been under-explored. Using a newly developed melodic priming task that included melodies with either “expected” or “unexpected” endings according to rules of Western music theory, we tested 5-and 6-year old children (N = 46). The stimuli in this task were constructed using the Information Dynamics Of Music or IDyOM system, a probabilistic model estimating the level of “unexpectedness” of a note given the preceding context. Results showed that responses to expected versus unexpected tones were faster and more accurate indicating that children have already formed robust melodic expectations at the age of 5. Aspects of the home musical environment significantly predicted the strength of melodic expectations suggesting that implicit musical learning may be influenced by the quantity of informal exposure to the surrounding musical environment

    Neuro-Rehabilitation OnLine (N-ROL): description and evaluation of a group-based telerehabilitation programme for acquired brain injury

    Get PDF
    Access to the published version of record is available free of charge at https://jnnp.bmj.com/content/92/12/1354Neuro-Rehabilitation OnLine was supported by a generous donation from the charity SameYou (charity number 1170102) and APL by National Institute of Health Research (RP-2015-06-012)

    Multimodel projections of stratospheric ozone in the 21st century

    Get PDF
    Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lower stratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Cly near 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease to 1980 values and before the Antarctic. None of the CCMs predict future large decreases in the Arctic column ozone. By 2100, total column ozone is projected to be substantially above 1980 values in all regions except in the tropics

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Melodic expectations in 5- and 6-year-old children

    Get PDF
    It has been argued that children implicitly acquire the rules relating to the structure of music in their environment using domain-general mechanisms such as statistical learning. Closely linked to statistical learning is the ability to form expectations about future events. Whether children as young as 5 years can make use of such internalized regularities to form expectations about the next note in a melody is still unclear. The possible effect of the home musical environment on the strength of musical expectations has also been under-explored. Using a newly developed melodic priming task that included melodies with either “expected” or “unexpected” endings according to rules of Western music theory, we tested 5- and 6-year-old children (N = 46). The stimuli in this task were constructed using the information dynamics of music (IDyOM) system, a probabilistic model estimating the level of “unexpectedness” of a note given the preceding context. Results showed that responses to expected versus unexpected tones were faster and more accurate, indicating that children have already formed robust melodic expectations at 5 years of age. Aspects of the home musical environment significantly predicted the strength of melodic expectations, suggesting that implicit musical learning may be influenced by the quantity of informal exposure to the surrounding musical environment
    corecore