59 research outputs found

    Double transmission uniparentale de l'ADN mitochondrial chez les unionoidae : hérédité, sélection et évolution

    Get PDF
    Les mitochondries, organites essentiels à la production d'énergie, possèdent leur propre matériel génétique : l'ADN mitochondrial (ADNmt). Chaque produit des gènes de I'ADNmt interagit avec des protéines codées par l'ADN nucléaire pour assurer la respiration mitochondriale. Dans le règne animal, I'ADNmt est transmis exclusivement de façon maternelle. La transmission maternelle permettrait d'éviter les conflits intergénomiques. Il existe un seul système mitochondrial qui transgresse singulièrement les lois de la transmission et de la génétique de I'ADNmt, il s'agit de la double transmission uniparentale [doubly uniparental inheritance (DUI)]. L'existence de la DUI a été démontrée chez sept familles de mollusques bivalves, dont les moules marines : Mytilidae; les palourdes marines : Veneridae, Solenidae et Donacidae et les moules d'eau douce : Unionidae, Margaritiferidae et Hyriidae. Les espèces possédant ce système atypique sont caractérisées par la présence de deux ADNmt distincts qui sont hérités de façon maternelle (ADNmt F) et paternelle (ADNmt M). Typiquement, les femelles sont homoplasmiques et contiennent uniquement I'ADNmt F tandis que les mâles sont hétéroplasmiques. Chez ces derniers, I'ADNmt F domine dans les tissus somatiques alors que la gonade contient presque exclusivement I'ADNmt M. Les divergences observées entre les ADNmt F et M chez les moules peuvent atteindre ~50% en acides aminés. Ce haut niveau de divergence observée entre les génomes M et F, coexistant à l'intérieur d'un même individu soulève de nombreuses questions d'ordre évolutives. La double transmission uniparentale représente, certes, un système atypique, mais les descriptions, les comparaisons et les analyses qu'elle permet contribuent à développer une image plus exacte de l'évolution non seulement au niveau de l'évolution de la DUI, mais aussi au niveau de l'évolution du génome mitochondrial dans son ensemble. L'objectif de la présente thèse est d'utiliser une approche comparative de données moléculaires pour mettre en évidence l'évolution des génomes mitochondriaux mâle et femelle du système de la double transmission uniparentale chez les moules unionoïdes. Chez ce groupe, la double transmission uniparentale semble évolutivement plus stable (aucun évènement de recombinaison ou de masculinisation n'a été recensé) et la divergence entre les ADNmt M et F est significativement plus élevée que chez les taxons marins. Le chapitre II est une revue de littérature sur le système de la double transmission uniparentale. Les observations qui ont menées à la découverte de la DUI y sont présentées de même que le modèle et les mécanismes de la DUI. Cette revue propose la DUI comme un système modèle qui pourrait permettre d'acquérir de nouvelles connaissances sur les interactions et la coadaptation des génomes nucléaires et mitochondriaux. L'objectif du chapitre III était de séquencer, d'annoter et de publier pour la toute première fois des génomes mâles complets d'Unionoïdés. Six nouveaux génomes mitochondriaux complets d'espèces d'Unionoïdés, soit le génome F et M de Venustaconcha ellipsiformis (Unionoida: Unionidae: Ambleminae: Lampsilini), Pyganodon grandis (Unionoida: Unionidae: Unioninae: Anodontini) et Quadrula quadrula (Unionoida: Unionidae: Ambleminae: Quadrulini) ont été séquencés avec succès et les caractéristiques génomiques propres à chaque lignée mâle ont été présentées et ont fourni un contexte pour les comparaisons des génomes mitochondriaux chez les lignées de bivalves possédant et ne possédant pas la DUI. La position basale des Unionoïdés à l'intérieur des autolamellibranches ainsi que la probable origine unique de la DUI suggère que la DUI serait apparue chez un ancêtre des autolamellibranches et aurait été subséquemment perdue chez plusieurs descendants. Les caractéristiques de la DUI observées chez les Unionoïdés s'approcheraient donc davantage de l'état ancestral de la DUI. Le chapitre IV est une étude phylogéographique du genre Pyganodon (Unionidae, Bivalvia) dans le nord-est de l'Amérique du Nord. Le genre Pyganodon a été choisi entre autres en raison de sa richesse taxonomique et de sa vaste répartition géographique dans le nord-est de l'Amérique du Nord. Cette analyse phylogéographique est basée sur l'étude du polymorphisme de gènes des ADNmt M et F ce qui a permis de comparer et confronter les signaux phylogénétiques rendus par les génomes M et F à l'intérieur de ce groupe. L'exploration de la distribution de la variation génétique entre et à l'intérieur des populations et des espèces de Pyganodon a permis de mettre en évidence la complexité du système, mais aussi de distinguer les processus démographiques des processus sélectifs. Ce chapitre renforce l'hypothèse de l'action de la sélection adaptative sur le génome mitochondrial mâle. Très tôt après la découverte du système du la DUI, un possible rôle de la sélection positive comme pression sélective majeure a été soupçonnée. Malgré l'accumulation de certains indices, un tel processus n'avait jamais été démontré. Dans le chapitre V de la présente thèse, en utilisant les données recueillies et cumulées dans le chapitre III soit l'ensemble des gènes mitochondriaux codants (sauf I'ATP8) de 29 espèces de mollusque bivalves de différentes familles, un test de sélection positive en maximum de vraisemblance a été effectué. Les résultats de ce test suggèrent que de nombreux sites d'acides aminés sont positivement sélectionnés sur le génome mâle des Unionoïdés. Quelques sites seraient également positivement sélectionnés dans I'ADNmt F des Unionoïdés et témoignent probablement de la coévolution cytonucléaire. Le test n'a pas mis en évidence de sélection positive dans les ADNmt M ni F de Mytilidés et confirment que les forces évolutives n'agissent pas de manière identique dans les différents groupes de bivalves possédant la DUI. Les résultats du test révèlent que des sites d'acides aminés seraient également positivement sélectionnés dans le troisième groupe de bivalves testé soit les Vénéridés. Toutefois, la concentration de ces sites sur certains gènes spécifiques de I'ADNmt F pourrait témoigner de l'action de la sélection positive suite à une réorganisation structurale du génome. Compte tenu du profond impact que peut avoir l'ensemble des résultats de ce chapitre sur notre compréhension actuelle des forces sélectives agissant sur le génome mitochondrial, la prudence est toutefois de mise dans leurs interprétations.\ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : ADN mitochondrial, génomique comparative, phylogéographie, sélection positive, double transmission uniparentale, bivalve

    Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, <it>Venustaconcha ellipsiformis, Pyganodon grandis </it>and <it>Quadrula quadrula </it>have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of <it>Inversidens japanensis </it>and F genome of <it>Lampsilis ornata</it>).</p> <p>Results</p> <p>Compared to their unionoid F counterparts, the M genomes contain some unique features including a novel localization of the <it>trnH </it>gene, an inversion of the <it>atp8-trnD </it>genes and a unique 3'coding extension of the cytochrome <it>c </it>oxidase subunit II gene. One or more of these unique M genome features could be causally associated with paternal transmission. Unionoid bivalves are characterized by extreme intraspecific sequence divergences between gender-associated mtDNAs with an average of 50% for <it>V. ellipsiformis</it>, 50% for <it>I. japanensis</it>, 51% for <it>P. grandis </it>and 52% for <it>Q. quadrula </it>(uncorrected amino acid p-distances). Phylogenetic analyses of 12 protein-coding genes from 29 bivalve and five outgroup mt genomes robustly indicate bivalve monophyly and the following branching order within the autolamellibranch bivalves: ((Pteriomorphia, Veneroida) Unionoida).</p> <p>Conclusion</p> <p>The basal nature of the Unionoida within the autolamellibranch bivalves and the previously hypothesized single origin of DUI suggest that (1) DUI arose in the ancestral autolamellibranch bivalve lineage and was subsequently lost in multiple descendant lineages and (2) the mitochondrial genome characteristics observed in unionoid bivalves could more closely resemble the DUI ancestral condition. Descriptions and comparisons presented in this paper are fundamental to a more complete understanding regarding the origins and consequences of DUI.</p

    Childhood trauma may increase risk of psychosis and mood disorder in genetically high-risk children and adolescents by enhancing the accumulation of risk indicators

    Get PDF
    Background: Genetically high-risk children carry indicators of brain dysfunctions that adult patients with schizophrenia or bipolar disorder display. The accumulation of risk indicators would have a higher predictive value of a later transition to psychosis or mood disorder than each individual risk indicator. Since more than 50% of adult patients report having been exposed to childhood trauma, we investigated whether exposure to trauma during childhood was associated with the early accumulation of risk indicators in youths at genetic risk. Methods: We first inspected the characteristics of childhood trauma in 200 young offspring (51% male) born to a parent affected by DSM-IV schizophrenia, bipolar disorder, or major depressive disorder. A subsample of 109 offspring (51% male) had measurements on four risk indicators: cognitive impairments, psychotic-like experiences, nonpsychotic nonmood childhood DSM diagnoses, poor global functioning. Trauma was assessed from direct interviews and reviews of lifetime medical and school records of offspring. Results: Trauma was present in 86 of the 200 offspring (43%). The relative risk of accumulating risk indicators in offspring exposed to trauma was 3.33 (95% CI 1.50, 7.36), but more pronounced in males (RR = 4.64, 95% CI 1.71, 12.6) than females (RR = 2.01, 95% CI 0.54, 7.58). Conclusion: Childhood trauma would be related to the accumulation of developmental precursors of major psychiatric disorders and more so in young boys at high genetic risk. Our findings may provide leads for interventions targeting the early mechanisms underlying the established relation between childhood trauma and adult psychiatric disorders

    Lose it or keep it: (how bivalves can provide) insights into mitochondrial inheritance mechanisms

    Get PDF
    The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across the whole animal kingdom. However, some interesting exceptions are known for the class Bivalvia, in which several species show an unusual pattern called doubly uniparental inheritance (DUI) whose outcome is a heteroplasmic pool of mtDNA in males. Even if DUI has been studied for long, its molecular basis has not been established yet. The aim of this work is to select classes of proteins known to be involved in the maintenance of SMI and to compare their features in two clam species differing for their mitochondrial inheritance mechanism, that is, the SMI species Ruditapes decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the transcriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in autophagy and mitophagy. For each protein group of interest, transcription bias (male or female), annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evidence supporting a role of nucleases/polymerases or autophagic machinery in the enforcement of SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have been retrieved, providing us with two alternative testable models for mitochondrial inheritance mechanisms at the molecular level

    Doubly Uniparental Inheritance of Mitochondria As a Model System for Studying Germ Line Formation

    Get PDF
    BACKGROUND: Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS: We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE: In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans

    Evidence for a Fourteenth mtDNA-Encoded Protein in the Female-Transmitted mtDNA of Marine Mussels (Bivalvia: Mytilidae)

    Get PDF
    BACKGROUND: A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. CONCLUSIONS/SIGNIFICANCE: Our results offer support for the hypothesis that "novel F genome-specific mitochondrial genes" are involved in key biological functions in bivalve species with DUI

    Table S1: List of the best fitting-models for the nucleotide phylogenetic analyses according to BIC value. The lower the BIC value, the better the model fits with the data. AIK, Akaike Information Criterion; BIC, Bayesian Information Criterion; INL, Natural log lik

    Get PDF
    There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA) in the animal kingdom: a system named doubly uniparental inheritance (DUI), which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI) in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841)and the veneroid Scrobicularia plana(Da Costa,1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented

    Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae)

    Get PDF
    BACKGROUND: Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS: Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS: The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria
    corecore