115 research outputs found

    Volatile metabolites profiling of a Chinese mangrove endophytic Pestalotiopsis sp. strain

    Get PDF
    Pestalotiopsis JCM2A4, an endophytic fungus originally isolated from leaves of the Chinese mangrove plant Rhizophora mucronata, produces a mixture of volatile metabolites. As determined by gas chromatography and gas chromatography/mass spectrometry (GC/GC-MS), 18 compounds representing all of the hexane extract were identified. Higher amounts of oil-based straight-chained alkyl (mono- and di-methyl) esters and fatty acids were found to compose major volatile chemotype which accounted for 78.65 and 14.52% of this organism, respectively. The main components was demonstrated to be pentadecanoic acid, 14-methyl-, methyl ester (35.92%); octadecanoic acid, methyl ester (13.10%); nonanedioic acid, dimethyl ester (11.21%); and n-hexadecanoic acid (10.54%). Two of these components were isolated and determined to be n-hexadecanoic acid and elaidic acid by 1H NMR and 1H-1H COSY spectroscopy. Antioxidant activity of the hexane extract and isolated compounds were screened using 2,2'-diphenyl-b-picrylhydrazyl (DPPH) free radical scavenging method. This is the first report to describe the volatile metabolites of mangrove endophytic Pestalotiopsis sp. strain; its specific fatty acid methyl esters (FAME) profile can be used as a tool for microbial source tracking.Keywords: Mangrove endophytic fungus, Pestalotiopsis sp., volatile metabolites, fatty acid methyl esters (FAME) profileAfrican Journal of Biotechnology Vol. 12(24), pp. 3802-380

    OR-051 Exploration of Potential Integrated Biomarkers for Sports Monitoring Based on Metabolic Profiling

    Get PDF
    Objective Metabolomic analysis is extensively applied to identify sensitive and specific biomarkers capable of reflecting pathological processes and physical responses or adaptations. Exercise training leads to profound metabolic changes, manifested as detectable alterations of metabolite levels and significant perturbations of metabolic pathways in sera, urine, and rarely, in saliva. Several metabolites have been exploited as biomarkers for generally evaluating physical states in almost all sports. However, alterations of metabolic profile caused by specific sports would be heterogeneous. Thus, developments of new techniques are eagerly required to identify characteristic metabolites as unique biomarkers for specifically accessing training stimulus and sports performances. In the present work, we conducted both metabolic profiling and a binary logistic regression model (BRM) of biological fluids derived from rowing ergometer test with the following aims: 1) to examine changes of metabolite profiles and identify characteristic metabolites in the samples of sera, urine, and saliva; 2) to screen out potential integrated biomarkers for sports-specific monitoring. Methods A total of 11 rowers (6 male, 5 female; aged 15±1 years; 4±2 years rowing training) underwent an indoor 6000m rowing ergometer test. Samples of sera, urine and saliva were collected before and immediately after the test. 1D 1H NMR spectra were recorded with a Bruker Avance III 650 MHz NMR spectrometer. NMR spectra were processed and aligned, resonances of metabolites were assigned and confirmed, and metabolite levels were calculated based on NMR integrals. Multivariate statistical analysis was carried out using partial least-squares discrimination analysis (PLS-DA) to distinguish metabolic profiles between the groups. The validated PLS-DA model gave the variable importance in the projection (VIP) for a given metabolite. Moreover, inter-group comparisons of metabolite levels were quantitatively conducted using the paired-sample t-test. Then, we identified characteristic metabolites with VIP>1 in PLS-DA and p<0.05 in t-test. Furthermore, we screened out potential biomarkers based on the characteristic metabolites identified from the three types of biological fluids using the BRM (stepwise). Results The rowing training induced profound changes of metabolic profiles in serum and saliva samples rather than in urine samples. Totally, 44 metabolites were assigned in which 19, 20, and 19 metabolites were identified from serum, urine and saliva samples, respectively. Seven metabolites were shared by the three types of samples. Moreover, five characteristic metabolites (pyruvate, lactate, succinate, N-acetyl-L-cysteine, and acetone) were identified from the serum samples. The elevated levels of pyruvate, lactate and succinate suggested that, the rowing training evidently promoted both oxidative phosphorylation and glycolysis pathways. Furthermore, three characteristic metabolites (tyrosine, formate, and methanol) were identified from the saliva samples. Given that tyrosine is the precursor of dopamine, the increased level of salivary tyrosine in all rowers experiencing the test, suggesting that salivary tyrosine could be explored as a potential indicator closely related to nervous fatigue in the test. On the other hand, PLS-DA did not show observable distinction of metabolic profiles between the urine samples before and immediately after the test. Moreover, 20 urinary metabolites did not display detectable altered levels. We then established the BRM with the identified characteristic metabolites, from which we selected one optimal regression model based on serum pyruvate and salivary tyrosine (adjusted R square was 0.935, P<0.001), indicating that the two selected metabolites would efficiently reflect the metabolic alterations in the test. Conclusions As far as the 6000m rowing ergometer test is concerned, serum samples could be a preferred resource for assessing the changes of energy metabolism in the test, while urine samples might have a relatively lower sensitivity to exercise-induced metabolic responses. Even though metabolite levels in saliva samples are generally lower than those in serum and urine samples, some salivary metabolites potentially have higher sensitivities to exercise-induced metabolic responses. Thus, the integration of multiple biomarkers identified from different type of species could potentially provide more sensitive and specific manners to monitor physical states in sports and exercise. This work may be of benefit to the exploration of integrated biomarkers for sports-specific monitoring

    Significance of decoy receptor 3 (Dcr3) and external-signal regulated kinase 1/2 (Erk1/2) in gastric cancer

    Get PDF
    Background: Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, is associated with anti-tumor immunity suppression. It is highly expressed in many tumors, and its expression can be regulated by the MAPK/MEK/ERK signaling pathway. The MAPK/MEK/ERK pathway has been reported to be a regulator in tumor occurrence, development and clonal expansion. External-signal regulated kinase (ERK) is a vital member of this pathway. Results: The expression of DcR3 and ERK1/2 in tumor tissues of gastric cancer patients was significantly higher than the non-cancerous group (P 0.05). However, in patients with stage I gastric cancer, the DcR3 and ERK1/2 levels were significantly lower than patients with more advanced stages. Conclusions: DcR3 and ERK1/2 play a vital role in the development of gastric cancer, and they may be new markers for indicating the efficiency of gastric cancer treatment in the future.985 funds; Fujian Province nature science funds [2010D009]; Science and Technology Department of Fujian province provincial public research institutes for basic scientific research special [2011R10020-2

    Loss of Angiopoietin-like 7 diminishes the regeneration capacity of hematopoietic stem and progenitor cells

    Get PDF
    © 2015 Xiao et al.; licensee Biomed Central. Successful expansion of hematopoietic stem cells (HSCs) would benefit the use of HSC transplants in the clinic. Angiopoietin-like 7 promotes the expansion of hematopoietic stem and progenitor cells (HSPC) in vitro and ex vivo. However, the impact of loss of Angptl7 on HSPCs in vivo has not been characterized. Here, we generated Angptl7-deficient mice by TALEN-mediated gene targeting and found that HSC compartments in Angptl7-null mice were compromised. In addition, wild type (WT) HSPCs failed to repopulate in the BM of Angptl7-null mice after serial transplantations while the engraftment of Angptl7-deficient HSPCs in WT mice was not impaired. These results suggest that Angptl7 is required for HSPCs repopulation in a non-cell autonomous manner.Link_to_subscribed_fulltex

    Odorranalectin Is a Small Peptide Lectin with Potential for Drug Delivery and Targeting

    Get PDF
    BACKGROUND: Lectins are sugar-binding proteins that specifically recognize sugar complexes. Based on the specificity of protein-sugar interactions, different lectins could be used as carrier molecules to target drugs specifically to different cells which express different glycan arrays. In spite of lectin's interesting biological potential for drug targeting and delivery, a potential disadvantage of natural lectins may be large size molecules that results in immunogenicity and toxicity. Smaller peptides which can mimic the function of lectins are promising candidates for drug targeting. PRINCIPAL FINDINGS: Small peptide with lectin-like behavior was screened from amphibian skin secretions and its structure and function were studied by NMR, NMR-titration, SPR and mutant analysis. A lectin-like peptide named odorranalectin was identified from skin secretions of Odorrana grahami. It was composed of 17 aa with a sequence of YASPKCFRYPNGVLACT. L-fucose could specifically inhibit the haemagglutination induced by odorranalectin. (125)I-odorranalectin was stable in mice plasma. In experimental mouse models, odorranalectin was proved to mainly conjugate to liver, spleen and lung after i.v. administration. Odorranalectin showed extremely low toxicity and immunogenicity in mice. The small size and single disulfide bridge of odorranalectin make it easy to manipulate for developing as a drug targeting system. The cyclic peptide of odorranalectin disclosed by solution NMR study adopts a beta-turn conformation stabilized by one intramolecular disulfide bond between Cys6-Cys16 and three hydrogen bonds between Phe7-Ala15, Tyr9-Val13, Tyr9-Gly12. Residues K5, C6, F7, C16 and T17 consist of the binding site of L-fucose on odorranalectin determined by NMR titration and mutant analysis. The structure of odorranalectin in bound form is more stable than in free form. CONCLUSION: These findings identify the smallest lectin so far, and show the application potential of odorranalectin for drug delivery and targeting. It also disclosed a new strategy of amphibian anti-infection

    Upregulation of UCP2 by Adiponectin: The Involvement of Mitochondrial Superoxide and hnRNP K

    Get PDF
    Background: The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression. Methodology/Principal Findnigs: Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression. Conclusions/Significance: Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver. © 2012 Zhou et al.published_or_final_versio

    Temperature increase reduces global yields of major crops in four independent estimates

    Get PDF
    Imbalance-P paper contact with: josep peñuelas: [email protected], rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population
    • …
    corecore