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Abstract: 69 

Wheat, rice, maize and soybean provide two-thirds of human caloric intake. 70 

Assessing the impact of global temperature increase on production of these crops is 71 

therefore critical to maintain global food supply, but different studies have yielded 72 

different results. Here we investigated the impacts of temperature on yields of the four 73 

crops by compiling extensive published results from four analytical methods: global 74 

grid-based and local point-based models, statistical regressions and field-warming 75 

experiments. Results from the different methods consistently show negative temperature 76 

impacts on crop yield at the global scale, generally underpinned by similar impacts at 77 

country and site scales. Without CO2 fertilization, effective adaptation and genetic 78 

improvement, each degree Celsius increase in global mean temperature would on 79 

average reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4% and 80 

soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas 81 

with some positive impact estimates. Multi-method analyses improved the confidence in 82 

assessments of future climate impacts on global major crops, and suggest crop- and 83 

region-specific adaptation strategies to ensure food security for an increasing world 84 

population. 85 

 86 

87 
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Significance Statement 88 

Agricultural production is vulnerable to climate change. Understanding climate 89 

change, especially the temperature impacts is critical if policy makers, agriculturalists 90 

and crop breeders are to ensure global food security. Our study, by compiling extensive 91 

published results from four analytical methods, show that independent methods 92 

consistently estimated negative temperature impacts on yields of four major crop at the 93 

global scale, generally underpinned by similar impacts at country and site scale. Multi-94 

method analyses improved the confidence in assessments of future climate impacts on 95 

global major crops, with important implications for developing crop- and region-96 

specific adaptation strategies to ensure future food supply of an increasing world 97 

population.  98 

 99 

100 
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Crops are sensitive to climate change, including changes in temperature and 101 

precipitation, and to rising atmospheric CO2 concentration, (1, 2). Among the changes, 102 

temperature increase has the most likely negative impact on crop yields (3, 4) and 103 

regional temperature changes can be projected from climate models with more certainty 104 

than precipitation. Meteorological records show that mean annual temperatures over 105 

areas where wheat, rice, maize and soybean are grown have increased by about 1 oC 106 

during the last century (Fig. 1A), and are expected to continue to increase over the next 107 

century (Fig. 1B), more so if greenhouse gas emissions continue to increase. It is thus 108 

necessary to quantify the impact of temperature increase on global crop yields, 109 

including any spatial variations, to first assess the risk to world food security, and then 110 

to develop targeted adaptive strategies to feed a burgeoning world population (5).  111 

 112 

Several methods have been developed to assess the impact of temperature increase 113 

on crop yields (6). Process-based crop models characterize crop growth and 114 

development in daily time steps and can be used to simulate the temperature response of 115 

yield either in areas around the globe defined by grids or at selected field sites or points 116 

(3, 7). A third method, statistical modelling, uses observed regional yields and historical 117 

weather records to fit regression functions to predict crop responses (8, 9). A fourth 118 

method is to artificially warm crops under near-natural field conditions to directly 119 

measure the impact of increased temperatures (4). Here we combine these four methods, 120 

which use disparate data sources, time spans and up-scaling approaches (10), to assess 121 

the impact of increasing temperatures on yields of wheat, rice, maize and soybean. Grid-122 

based and point-based simulations from recent international model intercomparison 123 
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exercises (2, 7, 11, 12) and published results of 13 statistical regression studies and 54 124 

field-warming experiments (Fig. S1) are synthesized (see Methods). 125 

 126 

Results and discussion 127 

Figure 2A illustrates the impact of temperature on yields of the four crops at the 128 

global scale. The loss in yield for each °C increase in global mean temperature is largest 129 

for maize (with multi-method average ±2 standard errors) of -7.4±4.5% per oC. All four 130 

methods predict a negative impact for maize, but with varying magnitudes. Mostly the 131 

different methods generated similar results at the country scale (Figs. 3C; S2-S3), but 132 

estimates varied between countries. The impact estimates are consistently negative for 133 

four major maize producers, together responsible for two-thirds of global maize 134 

production, namely the USA (-10.3±5.4% per oC), China (-8.0±6.1% per oC), Brazil (-135 

5.5±4.5% per oC) and India (-5.2±4.5% per oC). The estimated impact on maize crops in 136 

France, however, is smaller (-2.6±6.9% per oC), including a small positive estimate 137 

(3.8±5.2% per oC) from statistical modelling (13). 138 

 139 

For wheat, the average estimate from all four methods is a 6.0±2.9% loss in global 140 

yield with each oC increase in temperature (Fig. 2A). Results from the four methods 141 

agree more closely on the impact on wheat (-7.8 to -4.1% per °C) than on maize yields 142 

(Fig. 2A). The results from different methods are also generally consistent for the top 143 

five wheat-producing countries (Fig. 3A) that harvest over 50% of the world’s wheat. 144 

Spatially, however, the impacts are highly heterogeneous. Estimated wheat yield losses 145 

for the USA (-5.5±4.4% per °C) and France (-6.0±4.2% per °C) are similar to the global 146 

average, while those for India (-9.1±5.4% per °C) and Russia (-7.8±6.3% per °C) are 147 
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more vulnerable to temperature increase. The large yield reductions for Russia are 148 

mainly due to the contribution of a markedly higher negative result from the statistical 149 

method (-14.7±3.8% per °C; Fig. 3A), which did not account for in-season variations in 150 

temperature impact (10). By contrast, for China, the largest wheat producer in the world, 151 

the multi-method estimate indicates that only 2.6±3.1% of yield would be lost for 152 

each °C increase in global mean temperature. 153 

 154 

Rice is a main source of calories in developing countries. The analysis from the 155 

multi-method ensemble indicates that a global increase in temperature of 1 °C will 156 

reduce global rice yield by an average of 3.2±3.7%, much less than for maize and wheat 157 

(Fig. 2A). Grid- and point-based simulations and field-warming experiments indicate a 158 

negative impact of temperature of about -6.0% per °C, but some statistical regressions 159 

suggest almost no impact. Similar disparities in estimates between the statistical 160 

regressions and the other methods are found for several major rice-producing countries 161 

(Fig. 3B), including China, which produces about 30% of the world’s rice (14). Similar 162 

regression methods produce quite different estimates for Indonesia, Bangladesh and 163 

Vietnam, which when averaged across all methods lead to small estimated impacts on 164 

rice production for each country. For India, however, estimates from all methods predict 165 

large temperature impacts with a multi-method average of -6.6±3.8% per oC. 166 

 167 

Soybean is the fourth most important commodity crop (14). Results of just three 168 

studies using only two methods are available for global-scale estimates of the impacts of 169 

temperature on soybean yield. The global average reduction in soybean yield is 3.1% 170 

per °C rise (Fig. 2A), but the estimates are not statistically significant due to large 171 
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uncertainties in each method (the 95% CIs go through zero). Similar effects are 172 

estimated with both methods for the USA, Brazil, Argentina and Paraguay (Fig. 3D), 173 

which produce 84% of global soybean harvest (14). The largest expected reduction is -174 

6.8±7.1% per °C for the USA, the largest soybean producer. The overall results for 175 

China, the fourth largest producer, however, do not indicate statistically significant 176 

effects of temperature on soybean yield.  177 

 178 

 We compared different methods for a total of ten sites and found that method 179 

estimates are similar for most site-crop combinations (Fig. 4). Estimates from grid- and 180 

point-based simulations are more similar to each other than to field-warming 181 

observations (Figs. 4 and S4). This is not unexpected as the two types of simulation 182 

have some methodological similarities, such as model structure, assumptions and 183 

parameters. The grid- and point-based models both tend to project greater yield loss 184 

with increasing temperature at warmer locations and less yield loss at cooler locations, a 185 

distinction not identified in the field experiments (Fig. S4).  186 

 187 

Some of the impact differences between simulations and field experiments could be 188 

due to field experiments were only carried out over a few years and might not represent 189 

the entire variability of climate at this location while the simulations represent 30 years. 190 

Simulation parameters are also based on the properties of cultivars that differ from those 191 

grown in field experiments. For example, the field experiment in Wageningen (The 192 

Netherlands) indicated a large negative impact of temperature rise on wheat yield (-193 

11.6% per °C) but used a spring wheat that is not representative of the region (15). 194 

Positive impacts (11.2±1.2% per °C) were observed in wheat warming experiments in 195 
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Nanjing, China, where rising temperatures reduce damage from frost and heat stress 196 

during the early and late experimental wheat growing seasons respectively (16), factors 197 

that are captured less well in crop models (17). For maize grown in Jinzhou (China), a 198 

field experiment and a regression analysis produced very large negative estimates of 199 

impact but were not accompanied by margins of error to aid interpretation. 200 

 201 

We assumed the temperature response of impact on yield would be linear and 202 

multiplied projected temperature changes (Fig. 1B) with our multi-method impact 203 

estimates to give an average projected decrease in the global crop yields of 5.6% (95% 204 

CI, 0.1-14.4%) due to temperature change alone under the scenario of lowest emissions 205 

(RCP2.6) going up to 18.2% (95% CI, 0.7-38.6%) under the scenario of highest 206 

emissions (RCP8.5) (Fig. 2B). The estimated responses in yield are primarily from 207 

around +2 °C warming simulations, regressions and experiments (see Methods), so the 208 

estimates of impact for a global warming scenario near +4 °C (RCP8.5) are likely to be 209 

conservative due to the non-linear impact of rising temperatures in the real world (4, 210 

18). A non-linear response to temperature has also been suggested in simulations (1, 7, 211 

10).  212 

 213 

To prepare for adaptation to climate change, it is necessary to isolate the effects of 214 

individual factor for possible impacts on yield, as changes in different factors usually 215 

require different adaptation strategies. While elevated atmospheric CO2 concentration 216 

can stimulate growth when nutrients are not limited, it will also increase canopy 217 

temperature from more closed stomata (19). Also changes in precipitation can have an 218 

effect on crops, but projections on precipitation change are often uncertain. The focus of 219 
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our study is on temperature change, one of the most direct negative impact from climate 220 

change on crops, and does not include other possible climate change effects from 221 

elevated atmospheric CO2 concentration or changes in rainfall, and possible deliberate 222 

adaptation taken by farmers. Farmers have increased yields through adapting new 223 

technologies during the last half century, but yield has been also lost through increases 224 

in temperatures already (8). Yield increase has slowed down or even stagnated during 225 

last years in some parts of the world (20, 21) and further increases in temperature will 226 

result in further decreases in observed yields, in spite of farmers' adaptation efforts. 227 

 228 

The direct negative temperature impact on yield could be additionally affected via 229 

indirect temperature impacts. For instance, increasing temperature will increase 230 

atmospheric water demand, which could lead to additional water stress from increased 231 

water pressure deficits, subsequently reducing soil moisture and decreasing yield (22, 232 

23). However, an accelerated phenology from increased temperatures leads to a shorter 233 

growing period and less days of crop water use within a cropping season. Such indirect 234 

temperature effects are taken into account in each of the methods but are not explicitly 235 

quantified. Other indirect temperature impacts include more frequent heat waves and 236 

possible temperature impact on weeds, pests and diseases (18, 24-26). Increases in 237 

management intensity and yield potential could also unintentionally increase yield 238 

sensitivity to weather (27).  239 

 240 

By combining four different methods, our comprehensive assessment of the 241 

impacts of increasing temperatures on major global crops shows substantial risks for 242 

agricultural production, already stagnating in some parts of the world (20, 21). 243 
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However, differences in temperature responses of crops around the world suggest some 244 

mitigation could be possible to substantially affect the magnitude (or even direction) of 245 

climate change impacts on agriculture. These impacts will also vary substantially for 246 

crops and regions, and may interact with changes in precipitation and CO2, so a 247 

reinvigoration of national research and extension programs is urgently needed to offset 248 

future impacts of climate change, including temperature increase on agriculture using 249 

crop- and region-specific adaptation strategies.  250 

 251 

Materials and Methods 252 

Temperature data 253 

Historical observed gridded monthly temperature data are from the Climate 254 

Research Unit (0.5o × 0.5o grid, CRU TS 3.23; 255 

https://crudata.uea.ac.uk/cru/data/temperature/). Future predicted temperature data are 256 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System 257 

Models (ESMs) outputs (1.0o × 1.0o grids; http://cmip-pcmdi.llnl.gov/cmip5) used in the 258 

IPCC AR5 (28). According to data availability, the outputs from 15, 20, 11 and 22 259 

ESMs were included in this study for RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios, 260 

respectively. However, the calculated temperature changes are very similar to those 261 

calculated using all the ESMs (IPCC 5). The annual mean temperature over the global 262 

growing area of an individual crop was calculated by weighting each grid cell average 263 

(0.5o × 0.5o grids) according to the crop growing area within the grid cell (29). 264 

 265 

Global gridded crop model simulations  266 

The Agricultural Model Intercomparison and Improvement Project (AgMIP) (30) 267 

https://crudata.uea.ac.uk/cru/data/temperature/
http://cmip-pcmdi.llnl.gov/cmip5
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and Inter-Sectoral Impact Model Intercomparison Project 1 (ISI-MIP-1) (31) initiated a 268 

fast-track global climate impact assessment for the main global crops in 2012, including 269 

wheat, rice, maize and soybean. Seven global gridded crop models were used to 270 

simulate crop yield in 0.5o × 0.5o grid cells over the globe, forced with climate 271 

reconstruction for 1980-2099 based on HadGEM2-ES (32) derived from CMIP5. The 272 

simulations were carried out under a scenario of constant CO2 concentration (380 ppm 273 

in 2000) and full irrigation, to exclude the possibility of covariance with CO2 and 274 

precipitation. More detailed information about the simulations can be found in (1, 33). 275 

Temperature impact values were calculated from yield changes between 2029-2058 (+2 276 

oC of global mean temperature) and 1981-2010 (baseline) which were then halved to 277 

give +1 oC of global temperature impact. For global or country results, all the grids were 278 

averaged by weighting the corresponding growing area of each crop (29).  279 

 280 

Point-based ensemble simulations 281 

The Agricultural Model Intercomparison and Improvement Project (AgMIP) (30) 282 

also conducted crop yield simulations at 30, 4 and 4 representative sites around the 283 

world (Fig. S1) by using 30 wheat, 13 rice and 19 maize models, respectively. For 284 

wheat, a scenario of +2 oC was created by adjusting each day’s temperature by +2 oC 285 

relative to the baseline (1981-2010), other factors being constant. For rice and maize, 286 

the +3 oC scenarios were used. Model details about simulations for each crop can be 287 

found in refs 7, 11 and 12. The temperature impact was calculated as the yield change 288 

during the warming period relative to the yield during the baseline period normalized to 289 

+1 oC impact, assuming impact showed a linear temperature response. To obtain values 290 

for impacts at the country scale, each country was deemed to be similar to one or more 291 
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representative sites located in said (or nearby) country. As local temperature change can 292 

be different to the country mean, the local point-based estimates were scaled up by 293 

multiplying each country’s temperature factor produced by HagGEM2-ES (28), as in ref. 294 

7. The weighted average temperature impacts over all the countries were used to 295 

estimate the globe scale impact, weighted by country-level production (14). It should be 296 

noted that the results from only 4 sites were used to represent all the rice/maize-297 

producing countries, which might not encompass all the uncertainties from diverse 298 

production systems and is also one limitation in our analysis. No point-based model-299 

ensemble simulations for soybean were conducted in AgMIP. 300 

 301 

Field-warming experiments 302 

We started with all published peer-reviewed studies that applied artificial warming 303 

treatments on field crops. To avoid short-term noise, we only selected studies of crops 304 

that received all-day warming treatments for more than two months. Results from 305 

laboratory incubators or controlled environments with constant day-night temperature 306 

treatment (e.g., 37/29 oC vs. 29/21 oC) were excluded. The studies with temperature 307 

change (ΔT) unequal to +1 oC were adjusted to +1 oC impact by dividing the impact 308 

value by ΔT, which assumed a linear relationship between impacts and ΔT. The studies 309 

that produced temperature impacts of more than 50% per oC were deemed as outliers 310 

and excluded. A total of 46 published studies (available from the corresponding author 311 

on reasonable request) and 48 sites (Fig S1) were therefore included in the following 312 

analysis. Most of the sites (41 out of 48) had a warming magnitude of 1.5-3.0 oC, 313 

similar to the grid-based and point-based simulations. The upscaling methods from site 314 

to country to global scale are the same as for the point-based model simulations. 315 
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 316 

Statistical regressions 317 

Statistical models used regression equations to link historical year-to-year 318 

variations in yield to variations in selected climate variables. Different detrending 319 

methods were applied in the model to remove the influence of adaptation measures, 320 

such as crop management. In the statistical regression studies used here, the global level 321 

results of regression A and B (Fig. 2A) used detrending methods with the inclusion of a 322 

quadratic time trend and first-differences, respectively, and resulted in more similar 323 

temperature impacts than grid- or point-based simulations. A similar result was found 324 

for the country-level regression A and C (the country level results in Fig. 3), which used 325 

detrending methods with inclusion of a quadratic time trend and first-differences 326 

method, respectively. The results from statistical models were from 13 published studies 327 

(available from the corresponding author on reasonable request). The interannual 328 

fluctuation in temperature over the globe is around 2 °C (8), similar to the warming 329 

magnitude used in other methods. To ensure comparability of results, reported values 330 

under local temperature changes were normalized to global surface temperature changes 331 

by multiplying the corresponding temperature factor produced by HagGEM2-ES (28).  332 

 333 

Multi-method ensemble 334 

The above four methods constituted the method ensemble that we used to estimate 335 

multi-method means and uncertainties. In this study, values from the method ensembles 336 

were synthesized at site, country and global scale. At the country scale, the temperature 337 

impacts from regression methods were only reported for the five countries producing 338 

each crop, thus the results mainly focus on the relevant top five countries. The 339 
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uncertainty for the method ensemble was calculated by using a formula: var(Y) = 340 

var(E(Y|method)) + E(var(Y|method)), where the term (var(E(Y|method))) is a measure 341 

of the variability between methods, and E(var(Y|method)) is a measure of the average 342 

variability within methods, assuming that this is random sample of approaches from a 343 

population of approaches. Confidential intervals (CI) at 95% were calculated for the 344 

multi-method mean as: 95% CI = mean of methods ± 1.96× . 345 

 346 

Comparisons between methods 347 

A recent study by Liu et al., 2016 (10) compared the temperature impacts on wheat 348 

yield estimated by three different methods. We extended the analyses by including a 349 

large number of datasets from site-based observations (field-warming experiments) and 350 

comparing estimated impacts on yields of wheat, rice, maize and soybean, the four most 351 

important staple crops for humans. At the country scale, different methods were 352 

compared across countries. For the regression method, the results were only reported for 353 

the five major countries producing each crop and thus the comparisons only focused on 354 

the relevant five countries. At the site scale, grid-based simulations were compared with 355 

site-based simulations and field-warming experiments. Grids containing sites of point-356 

based simulations or warming experiments were selected. The comparisons include 357 

absolute yield under different temperature scenarios and relative temperature impacts. 358 

The baseline and temperature period for each grid was determined when the rolling 30-359 

year annual mean temperature was equal to the baseline and increased temperatures 360 

used for point-based simulations and experiments. The temperature impact was 361 

calculated as the yield changes relative to the baseline and then adjusted to a +1 oC 362 

global temperature impact. 363 
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 364 

Prediction of yield changes by the end of century 365 

The yield change by the end of century was calculated as the products of the 366 

ensemble estimated yield response and projections of global temperature rise from 367 

CMIP5. As the yield response (Fig. 2A) and predicted temperature change (Fig. 1B) 368 

both have uncertainties, a bootstrap resampling approach was used to obtain the 369 

predicted yield change and its uncertainty. At each instance of bootstrap resampling, one 370 

pair of values for yield response and temperature change were sampled respectively 371 

from their original data to calculate the predicted yield change; this procedure assumes 372 

the chosen value is a random sample from a population of values. Repeating the above 373 

process 5000 times gave 5000 values of predicted yield change, which constitute a new 374 

distribution of the predicted yield change. The 2.5th to 97.5th percentile were deemed as 375 

the boundaries of uncertainty for the predicted yield change. 376 

 377 
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Figure legends 486 

Figure 1. Mean annual temperature changes over time. (A) Historically observed 487 

temperature anomalies relative to 1961-1990 for global growing areas of four individual 488 

crops. (B) Future projected temperature changes (2071–2100 in comparison to 1981–489 

2010 baseline) of four crop-growing areas and the globe (land and sea surface) under 490 

four representative concentration pathway (RCP) scenarios of increasing greenhouse 491 

gas concentrations. Error bars represent standard deviations in the climate model results.  492 

 493 

Figure 2. Multi-method estimates of global crop yield changes in response to 494 

temperature increase. (A) Impacts on crop yields of a 1 °C increase in global 495 

temperature in grid-based simulations (Grid-Sim), point-based simulations (Point-Sim), 496 

field-warming experiments (Point-Obs), and statistical regressions at the country level 497 

(Regres_A) (9) and the global level (Regres_B) (8). Circles, means of estimates from 498 

each method or medians for Grid-Sim and Point-Sim. Filled bars, means of the multi-499 

method ensemble. Error bars show 95% CIs for individual methods (grey lines) and the 500 

ensemble of methods (black lines). (B) Projected changes in yield due to temperature 501 

changes by the end of the 21st century. CIs of 95% are given in square brackets. 502 

 503 

Figure 3. Multi-method estimates of grain yield changes with a 1 oC increase in 504 

global temperature for the five major countries producing each crop. (A) Wheat. 505 

(B) Rice. (C) Maize. (D) Soybean. Grid-Sim, Point-Sim Point-Obs and Regres_A are 506 

grid-based simulations, point-based simulations, field-warming experiments and 507 

statistical regressions at the country level (Regres_A) (9), respectively. Regres_C is 508 

another regression method used at the country scale (13). Regres_D-K represents 509 
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various country-level regression analyses used for specific crops or countries shown by 510 

individual labels D-K above the bars. Vertical axes show the temperature impact on 511 

crop yield in % per oC increase. Error bars are 95% CIs. Values for error margins are 512 

not available for point-based observations for maize in China. 513 

 514 

Figure 4. Site-based multi-method ensemble of crop yield changes with 1 oC of 515 

global temperature increase. Site estimates from >3 methods are shown for (A) wheat, 516 

(B) rice and (C) maize or from 2 methods for (D) soybean. Grid-Sim, Point-Sim and 517 

Point-Obs are grid-based simulations, point-based simulations and field-warming 518 

experiments, respectively. Regres_L-N are site-, county- or city-scale regression 519 

analyses for specific crops shown by labels L-N next to the mean of the plotted dataset. 520 

Error bars are 95% CIs. Error bars for the Jinzhou (China) results for regression L and 521 

N were not available. 522 

523 
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