42 research outputs found
Circumstellar Structure around Evolved Stars in the Cygnus-X Star Formation Region
We present observations of newly discovered 24 micron circumstellar
structures detected with the Multiband Imaging Photometer for Spitzer (MIPS)
around three evolved stars in the Cygnus-X star forming region. One of the
objects, BD+43 3710, has a bipolar nebula, possibly due to an outflow or a
torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a
circular shell of 24 micron emission suggestive of either a limb-brightened
shell or disk seen face-on. No diffuse emission was detected around either of
these two objects in the Spitzer 3.6-8 micron Infrared Array Camera (IRAC)
bands. The third object is the luminous blue variable candidate G79.29+0.46. We
resolved the previously known inner ring in all four IRAC bands. The 24 micron
emission from the inner ring extends ~1.2 arcmin beyond the shorter wavelength
emission, well beyond what can be attributed to the difference in resolutions
between MIPS and IRAC. Additionally, we have discovered an outer ring of 24
micron emission, possibly due to an earlier episode of mass loss. For the two
shell stars, we present the results of radiative transfer models, constraining
the stellar and dust shell parameters. The shells are composed of amorphous
carbon grains, plus polycyclic aromatic hydrocarbons in the case of
G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X
cloud. Although G79.29+0.46 may simply be on the far side of the cloud, HBHA
4202-22 is unrelated to the Cygnus-X star formation region.Comment: Accepted by A
3.6 Years of Dirbe Near-Infrared Stellar Light Curves
The weekly averaged near-infrared fluxes for 2652 stars were extracted from the cold and warm era all-sky maps of the Diffuse Infrared Background Experiment (DIRBE). Since the DIRBE program only archived the individual Calibrated Infrared Observations for the 10 month cold era mission, the weekly averaged fluxes were all that were available for the warm era. The steps required to extract stellar fluxes are described as are the adjustments that were necessary to correct the results for several systematic effects. The observations are at a cadence of once a week for 3.6 years (∼1300 days), providing continuous sampling on variable stars that span the entire period for the longest fundamental pulsators. The stars are divided into three categories: those with large amplitude of variability, smaller amplitude variables, and sources whose near-infrared brightness do not vary according to our classification criteria. We show examples of the results and the value of the added baseline in determining the phase lag between the visible and infrared
An infrared ring nebula around MSX5C G358.5391+00.1305: The true nature of suspected planetary nebula wray 17-96 determined via direct imaging and spectroscopy
The Midcourse Space Experiment (MSX) Galactic plane survey discovered a nearly perfectly circular ring nebula around the suspected planetary nebula Wray 17-96. Using near-IR spectral typing and modeling of the mid-IR nebula, we find that Wray 17-96 is more likely a candidate to be a luminous blue variable (LBV) surrounded by a large spherical ejecta shell. It is very similar to the G79.29+0.46 LBV candidate in Cygnus and the Pistol Star. The K-band spectrum and the mid-IR data indicate a stellar temperature of 13,000 K. The most likely distance to the source is 4.5 kpc, leading to a luminosity of 1.8 × 106 L. We suggest that the nebula consists of multiple shells and that an evolution from oxygen-rich to carbon-rich chemistry may be indicated
Diaphragm adaptations in patients with COPD.
Contains fulltext :
70068.pdf ( ) (Open Access)Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered pathologic of nature. Whereas the fiber type shift towards oxidative type I fibers in COPD diaphragm is regarded beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single fiber level is associated with loss of myosin content in these fibers. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. This review postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients appear not limited in their daily life activities. Treatment of diaphragm dysfunction in COPD is complex since its etiology is unclear, but recent findings indicate the ubiquitin-proteasome pathway as a prime target to attenuate diaphragm wasting in COPD