25 research outputs found

    Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Get PDF
    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle

    A field investigation of phreatophyte-induced fluctuations in the water table

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] Hydrographs from shallow wells in vegetated riparian zones frequently display a distinctive pattern of diurnal water table fluctuations produced by variations in plant water use. A multisite investigation assessed the major controls on these fluctuations and the ecohydrologic insights that can be gleaned from them. Spatial and temporal variations in the amplitude of the fluctuations are primarily a function of variations in (1) the meteorological drivers of plant water use, (2) vegetation density, type, and vitality, and (3) the specific yield of sediments in the vicinity of the water table. Past hydrologic conditions experienced by the riparian zone vegetation, either in previous years or earlier within the same growing season, are also an important control. Diurnal water table fluctuations can be considered a diagnostic indicator of groundwater consumption by phreatophytes at most sites, so the information embedded within these fluctuations should be more widely exploited in ecohydrologic studies

    Advances in the Study and Understanding of Groundwater Discharge to Surface Water

    No full text
    Groundwater discharge is vitally important for maintaining or restoring valuable ecosystems in surface water and at the underlying groundwater-surface-water ecotone [...

    Hydrologic Functions of Prairie Wetlands

    Get PDF
    Wetlands in the prairie known as potholes or sloughs represent an ever-changing mosaic of surface waters interacting with the atmosphere, groundwater, and each other in a variety of ways. Studies of groups of adjacent wetlands in different parts of the glaciated North American prairie have enabled some connections to be made between hydrologic processes, biological communities, and use of these wetlands by wetland-dependent wildlife. Understanding controls on variability in water levels, water volume, and salinity in these wetlands sets the stage for understanding controls on biological communities utilizing these wetlands. The role that natural variability in water and salinity plays in making these wetlands an important resource for waterfowl will provide an important context for those who are responsible for artificially altering the variability of water and salinity in prairie wetlands
    corecore