209 research outputs found
Efficacy profile of ivabradine in patients with heart failure plus angina pectoris
Objectives: In the Systolic Heart Failure Treatment with the If Inhibitor Ivabradine Trial (SHIFT), slowing of the heart rate with ivabradine reduced cardiovascular death or heart failure hospitalizations among patients with systolic chronic heart failure (CHF). Subsequently, in the Study Assessing the Morbidity-Mortality Benefits of the If Inhibitor Ivabradine in Patients with Coronary Artery Disease (SIGNIFY) slowing of the heart rate in patients without CHF provided no benefit for cardiovascular death or nonfatal myocardial infarction (primary composite end point), with secondary analyses suggesting possible harm in the angina subgroup. Therefore, we examined the impact of ivabradine in the patients with CHF plus angina in SHIFT. Methods: SHIFT enrolled adults with stable, symptomatic CHF, a left ventricular ejection fraction ≤35% and a sinus rhythm with a resting heart rate ≥70 bpm. Outcomes were the SHIFT and SIGNIFY primary composite end points and their components. Results: Of 6,505 patients in SHIFT, 2,220 (34%) reported angina at randomization. Ivabradine numerically, but not significantly, reduced the SIGNIFY primary composite end point by 8, 11 and 11% in the SHIFT angina subgroup, nonangina subgroup and overall population, respectively. Ivabradine also reduced the SHIFT primary composite end point in all 3 subgroups. Conclusions: In SHIFT, ivabradine showed consistent reduction of cardiovascular outcomes in patients with CHF; similar results were seen in the subgroup of SHIFT patients with angina
Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking
We present an unbiased and robust analysis method for power-law blinking
statistics in the photoluminescence of single nano-emitters, allowing us to
extract both the bright- and dark-state power-law exponents from the emitters'
intensity autocorrelation functions. As opposed to the widely-used threshold
method, our technique therefore does not require discriminating the emission
levels of bright and dark states in the experimental intensity timetraces. We
rely on the simultaneous recording of 450 emission timetraces of single
CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon
sensitivity. Under these conditions, our approach can determine ON and OFF
power-law exponents with a precision of 3% from a comparison to numerical
simulations, even for shot-noise-dominated emission signals with an average
intensity below 1 photon per frame and per quantum dot. These capabilities pave
the way for the unbiased, threshold-free determination of blinking power-law
exponents at the micro-second timescale
Modeless Pointing with Low-Precision Wrist Movements
Part 1: Long and Short Papers (Continued)International audienceWrist movements are physically constrained and take place within a small range around the hand's rest position. We explore pointing techniques that deal with the physical constraints of the wrist and extend the range of its input without making use of explicit mode-switching mechanisms. Taking into account elastic properties of the human joints, we investigate designs based on rate control. In addition to pure rate control, we examine a hybrid technique that combines position and rate-control and a technique that applies non-uniform position-control mappings. Our experimental results suggest that rate control is particularly effective under low-precision input and long target distances. Hybrid and non-uniform position-control mappings, on the other hand, result in higher precision and become more effective as input precision increases
Using CNNs For Users Segmentation In Video See-Through Augmented Virtuality
In this paper, we present preliminary results on the use of deep learning
techniques to integrate the users self-body and other participants into a
head-mounted video see-through augmented virtuality scenario. It has been
previously shown that seeing users bodies in such simulations may improve the
feeling of both self and social presence in the virtual environment, as well as
user performance. We propose to use a convolutional neural network for real
time semantic segmentation of users bodies in the stereoscopic RGB video
streams acquired from the perspective of the user. We describe design issues as
well as implementation details of the system and demonstrate the feasibility of
using such neural networks for merging users bodies in an augmented virtuality
simulation.Comment: 6 pages, 6 figures. Published in the 2nd International Conference on
Artificial Intelligence & Virtual Reality (IEEE AIVR 2019
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic
counters and target units based on nuclear photographic emulsion films have
been developed. The application to the OPERA experiment, that aims at detecting
oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is
reported in this paper. In order to reduce background due to latent tracks
collected before installation in the detector, on-site large-scale treatments
of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd)
packages, each made of a doublet of emulsion films, have been designed,
assembled and coupled to the OPERA target units ("ECC bricks"). A device has
been built to print X-ray spots for accurate interconnection both within the
CSd and between the CSd and the related ECC brick. Sample emulsion films have
been extensively scanned with state-of-the-art automated optical microscopes.
Efficient track-matching and powerful background rejection have been achieved
in tests with electronically tagged penetrating muons. Further improvement of
in-doublet film alignment was obtained by matching the pattern of low-energy
electron tracks. The commissioning of the overall OPERA alignment procedure is
in progress.Comment: 19 pages, 19 figure
Leveraging Passive Haptic Feedback in Virtual Environments with the Elastic-Arm Approach
Study of the effects induced by lead on the emulsion films of the OPERA experiment
The OPERA neutrino oscillation experiment is based on the use of the Emulsion
Cloud Chamber (ECC). In the OPERA ECC, nuclear emulsion films acting as very
high precision tracking detectors are interleaved with lead plates providing a
massive target for neutrino interactions. We report on studies related to the
effects occurring from the contact between emulsion and lead. A low
radioactivity lead is required in order to minimize the number of background
tracks in emulsions and to achieve the required performance in the
reconstruction of neutrino events. It was observed that adding other chemical
elements to the lead, in order to improve the mechanical properties, may
significantly increase the level of radioactivity on the emulsions. A detailed
study was made in order to choose a lead alloy with good mechanical properties
and an appropriate packing technique so as to have a low enough effective
radioactivity.Comment: 19 pages, 11 figure
Traditional and new composite endpoints in heart failure clinical trials: facilitating comprehensive efficacy assessments and improving trial efficiency
Composite endpoints are commonly used as the primary measure of efficacy in heart failure clinical trials to assess the overall treatment effect and to increase the efficiency of trials. Clinical trials still must enrol large numbers of patients to accrue a sufficient number of outcome events and have adequate power to draw conclusions about the efficacy and safety of new treatments for heart failure. Additionally, the societal and health system perspectives on heart failure have raised interest in ascertaining the effects of therapy on outcomes such as repeat hospitalization and the patient's burden of disease. Thus, novel methods for using composite endpoints in clinical trials (e.g. clinical status composite endpoints, recurrent event analyses) are being applied in current and planned trials. Endpoints that measure functional status or reflect the patient experience are important but used cautiously because heart failure treatments may improve function yet have adverse effects on mortality. This paper discusses the use of traditional and new composite endpoints, identifies qualities of robust composites, and outlines opportunities for future research
- …
