105 research outputs found

    Demographic Amplification of Climate Change Experienced by the Contiguous United States Population during the 20th Century

    Get PDF
    Better understanding of the changing relationship between human populations and climate is a global research priority. The 20th century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse

    Evaluation of a Technique to Trap Lemmings Under the Snow

    Get PDF
    We attempted to live trap lemmings under the snow in their preferred winter habitat at two sites in the Canadian Arctic using chimney-like boxes. Lemmings used the boxes during winter, but we had very low trapping success in April and May. During spring trapping, in contrast to most of the winter, subnivean temperatures became colder than ambient air temperatures. We hypothesize that our low success in spring resulted from lemmings’ leaving the deeper snow areas where our boxes were located and moving to shallower snow or exposed tundra. We suggest that the trapping boxes could be successful if trapping occurred earlier during winter.Nous avons tenté de capturer des lemmings sous la neige dans leur habitat hivernal préféré en utilisant des boîtes en forme de cheminée à deux sites situés dans l’Arctique canadien. Les boîtes ont été utilisées par les lemmings durant l’hiver mais nous avons eu un très faible succès de capture en avril et mai. Contrairement à la majorité de l’hiver, les températures sous-nivales étaient plus froides que les températures de l’air pendant que nous avons trappé au printemps. Nous émettons l’hypothèse que notre faible succès au printemps est dû au déplacement des lemmings des sites de fort enneigement, où nos boîtes étaient installées, vers ceux de faible enneigement ou vers la toundra exposée. Nous suggérons que les boîtes de trappage pourraient être plus utiles si le trappage se faisait plus tôt au courant de l’hiver

    Snow Buntings Maintain Winter-Level Cold Endurance While Migrating to the High Arctic

    Get PDF
    Arctic breeding songbirds migrate early in the spring and can face winter environments requiring cold endurance throughout their journey. One such species, the snow bunting (Plectrophenax nivalis), is known for its significant thermogenic capacity. Empirical studies suggest that buntings can indeed maintain winter cold acclimatization into the migratory and breeding phenotypes when kept captive on their wintering grounds. This capacity could be advantageous not only for migrating in a cold environment, but also for facing unpredictable Arctic weather on arrival and during preparation for breeding. However, migration also typically leads to declines in the sizes of several body components linked to metabolic performance. As such, buntings could also experience some loss of cold endurance as they migrate. Here, we aimed to determine whether free-living snow buntings maintain a cold acclimatized phenotype during spring migration. Using a multi-year dataset, we compared body composition (body mass, fat stores, and pectoralis muscle thickness), oxygen carrying capacity (hematocrit) and metabolic performance (thermogenic capacity – Msum and maintenance energy expenditure – BMR) of birds captured on their wintering grounds (January–February, Rimouski, QC, 48°N) and during pre-breeding (April–May) in the Arctic (Alert, NU, 82°). Our results show that body mass, fat stores and Msum were similar between the two stages, while hematocrit and pectoralis muscle thickness were lower in pre-breeding birds than in wintering individuals. These results suggest that although tissue degradation during migration may affect flight muscle size, buntings are able to maintain cold endurance (i.e., Msum) up to their Arctic breeding grounds. However, BMR was higher during pre-breeding than during winter, suggesting higher maintenance costs in the Arctic

    Sources of variation in small rodent trophic niche: New insights from DNA metabarcoding and stable isotope analysis

    Get PDF
    Intraspecific competition for food is expected to increase the trophic niche width of consumers, defined here as their diet diversity, but this process has been little studied in herbivores. Population densities of small rodents fluctuate greatly, providing a good study model to evaluate effects of competition on trophic niche. We studied resource use in five arctic small rodent populations of four species combining DNA metabarcoding of stomach contents and stable isotope analysis (SIA). Our results suggest that for small rodents, the most pronounced effect of competition on trophic niche is due to increased use of secondary habitats and to habitat-specific diets, rather than an expansion of trophic niche in primary habitat. DNA metabarcoding and SIA provided complementary information about the composition and temporal variation of herbivore diets. Combing these two approaches requires caution, as the underlying processes causing observed patterns may differ between methodologies due to different spatiotemporal scales. The final version of this research has been published in Isotopes in Environmental and Health Studies. © 2014 Taylor & Franci

    Limited heat tolerance in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly warming world

    Get PDF
    Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (Ta) is unknown. Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing Ta and measured body temperature (Tb), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production). Buntings had an average (±SD) Tb of 41.3 ± 0.2°C at thermoneutral Ta and increased Tb to a maximum of 43.5 ± 0.3°C. Buntings started panting at Ta of 33.2 ± 1.7°C, with rapid increases in EWL starting at Ta = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral Ta, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production. Our results suggest that buntings’ well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment

    Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding

    Get PDF
    Sympatric species are expected to minimize competition by partitioning resources, especially when these are limited. Herbivores inhabiting the High Arctic in winter are a prime example of a situation where food availability is anticipated to be low, and thus reduced diet overlap is expected. We present here the first assessment of diet overlap of high arctic lemmings during winter based on DNA metabarcoding of feces. In contrast to previous analyses based on microhistology, we found that the diets of both collared (Dicrostonyx groenlandicus) and brown lemmings (Lemmus trimucronatus) on Bylot Island were dominated by Salix while mosses, which were significantly consumed only by the brown lemming, were a relatively minor food item. The most abundant plant taxon, Cassiope tetragona, which alone composes more than 50% of the available plant biomass, was not detected in feces and can thus be considered to be non-food. Most plant taxa that were identified as food items were consumed in proportion to their availability and none were clearly selected for. The resulting high diet overlap, together with a lack of habitat segregation, indicates a high potential for resource competition between the two lemming species. However, Salix is abundant in the winter habitats of lemmings on Bylot Island and the nonSalix portion of the diets differed between the two species. Also, lemming grazing impact on vegetation during winter in the study area is negligible. Hence, it seems likely that the high potential for resource competition predicted between these two species did not translate into actual competition. This illustrates that even in environments with low primary productivity food resources do not necessarily generate strong competition among herbivores

    The CC-Bio Project: Studying the Effects of Climate Change on Quebec Biodiversity

    Get PDF
    Anticipating the effects of climate change on biodiversity is now critical for managing wild species and ecosystems. Climate change is a global driver and thus affects biodiversity globally. However, land-use planners and natural resource managers need regional or even local predictions. This provides scientists with formidable challenges given the poor documentation of biodiversity and its complex relationships with climate. We are approaching this problem in Quebec, Canada, through the CC-Bio Project (http://cc‑bio.uqar.ca/), using a boundary organization as a catalyst for team work involving climate modelers, biologists, naturalists, and biodiversity managers. In this paper we present the CC-Bio Project and its general approach, some preliminary results, the emerging hypothesis of the northern biodiversity paradox (a potential increase of biodiversity in northern ecosystems due to climate change), and an early assessment of the conservation implications generated by our team work

    Generation of Priority Research Questions to Inform Conservation Policy and Management at a National Level

    Get PDF
    Integrating knowledge from across the natural and social sciences is necessary to effectively address societal tradeoffs between human use of biological diversity and its preservation. Collaborative processes can change the ways decision makers think about scientific evidence, enhance levels of mutual trust and credibility, and advance the conservation policy discourse. Canada has responsibility for a large fraction of some major ecosystems, such as boreal forests, Arctic tundra, wetlands, and temperate and Arctic oceans. Stressors to biological diversity within these ecosystems arise from activities of the country's resource-based economy, as well as external drivers of environmental change. Effective management is complicated by incongruence between ecological and political boundaries and conflicting perspectives on social and economic goals. Many knowledge gaps about stressors and their management might be reduced through targeted, timely research. We identify 40 questions that, if addressed or answered, would advance research that has a high probability of supporting development of effective policies and management strategies for species, ecosystems, and ecological processes in Canada. A total of 396 candidate questions drawn from natural and social science disciplines were contributed by individuals with diverse organizational affiliations. These were collaboratively winnowed to 40 by our team of collaborators. The questions emphasize understanding ecosystems, the effects and mitigation of climate change, coordinating governance and management efforts across multiple jurisdictions, and examining relations between conservation policy and the social and economic well-being of Aboriginal peoples. The questions we identified provide potential links between evidence from the conservation sciences and formulation of policies for conservation and resource management. Our collaborative process of communication and engagement between scientists and decision makers for generating and prioritizing research questions at a national level could be a model for similar efforts beyond Canada
    • …
    corecore