23 research outputs found

    Étude expérimentale de la tenue en fatigue de l’alliage AlSi10Mg élaboré par fusion laser de lit de poudre

    No full text
    This work shows the impact of defects and microstructure on the fatigue limit of AlSi10Mg produced by Additive Layer Manufacturing (ALM). Samples are produced according to three orientations with respect to the construction plate (0 °, 45 ° and 90 °); the studied surfaces are machined or left as-built (AB) in the gauge section. The specimens are studied with or without T6 heat treatment. The study surfaces are machined or as built. Some specimens are subjected to T6 heat treatment. Before any others study, the material is characterized in connection with the process parameters through several techniques (microscopes and 3D X-ray microtomography). Regarding the fatigue, the S-N curves are established before and after T6, mainly at R = -1 under uniaxial loading. For all the fatigue test specimens, fracture surfaces analysis shows that it is always a defect that cause fatigue failure. Thus, a criterion is applied to define these critical defects (type, size morphology and position) and the fatigue limit is analyzed through the Kitagawa type diagrams. The role of the building direction on the fatigue strength is studied, before and after T6 heat treatment, for both machined and as-built surfaces. For this purpose, a sketch based on the characteristic grain size is proposed to explain post-T6 orientation effects. The contribution of the precipitation structure is also studied; as well as the role of defects (type, size, morphology and position) on the fatigue limit at different microstructural states: before and after T6. In order to understand the surface fatigue damage mechanisms, the replica method is used on a polished specimen. In this context, a propagation law of natural cracks, that is to say due to a defect inherited from the process, is identified. It makes it possible to separate the initiation and propagation phases, thus feeding the discussions on the phenomena of priming in the presence of defects. In addition, some fatigue criteria are also discussed and the Defect Stress Gradient (DSG) approach is adapted to the studied material, by taking into account the size of the crystallographic grains. In the specific case of specimens with as-built useful sections, the role of the process of suppression of the building supports on the initiation of fatigue cracks is studied; the definition of the concept of defect size in the presence of roughness, at the scale of the surface undulation, is discussed. Knowing that initiation can occurs on a surface undulation or on an isolated defect (porosity or lack-of-fusion), an experimental method is proposed to analyze the competition between these factors. In a context of industrial development, the influence on the fatigue limit of the process parameters, related to the laser (scanning speed, power and hatching distance), or powder bed (chemical composition, particle size, bed thickness) is studied, in order to feed the discussions towards the process optimization regarding the fatigue strength.Ce travail montre l'impact des défauts et de la microstructure sur la limite de fatigue de l’AlSi10Mg de fabrication additive (FA). Les échantillons d’étude sont fabriqués suivant trois orientations (0 °, 45 ° et 90 °) ; les surfaces d’étude sont usinées ou brutes de fabrication. Les éprouvettes sont étudiées avec ou sans traitement thermique T6. Avant toute chose, le matériau est d’abord caractérisé en lien avec les paramètres du procédé à l’aide de plusieurs moyens (microscopie, microtomographie). Du point de la fatigue, les courbes S-N sont établies avant et après T6, principalement à R = -1 en sollicitation uniaxiale. Pour toutes les éprouvettes d’étude, l’analyse des faciès montre que ce sont toujours les défauts qui sont à l’origine de la rupture par fatigue. Ainsi, un critère est appliqué pour définir ces défauts critiques (type, taille morphologie et position) et la limite de fatigue est systématiquement analysée via les diagrammes de Kitagawa. Le rôle de la direction de construction sur la tenue en fatigue est étudié, avant et après traitement thermique T6, tant pour les surfaces usinées que brutes de fabrication. À cet effet, un scénario basé sur la taille caractéristique des grains est proposé pour expliquer les effets d’orientation post-T6. La contribution de la structure de précipitation est également étudiée ; ainsi que le rôle des défauts (type, taille, morphologie et position) sur la limite de fatigue à différents états microstructuraux : avant et après T6. Afin de comprendre les mécanismes d’endommagement par fatigue en surface, la méthode des répliques est déployée sur une éprouvette polie. Dans ce cadre, une loi de propagation des fissures naturelles, c'est-à-dire qu'elles sont dues à un défaut hérité du procédé, est identifiée. Elle permet de séparer les phases d’amorçage et de propagation, alimentant ainsi les discussions sur les phénomènes d’amorçage en présence de défauts. Par ailleurs, quelques critères de fatigue sont également discutés et l’approche Defect Stress Gradient (DSG) est adaptée au matériau d’étude en tenant compte de la taille des grains cristallographiques. Pour les sections utiles brutes de fabrication, le rôle du mode de suppression des supports fabrication sur l’amorçage des fissures de fatigue est étudié ; la définition de la notion de taille de défauts en présence de la rugosité, à l’échelle de l’ondulation de surface, est abordée. Sachant que l’amorçage peut avoir lieu sur une ondulation de surface ou sur un défaut isolé (porosité ou défaut de fusion), une méthode expérimentale est proposée pour analyser la compétition entre ces facteurs. Dans un contexte de développement industriel, l’influence sur la limite de fatigue des paramètres de procédé relatifs au laser (vitesse de balayage, puissance et distance de hachure), au lit de poudre (composition chimique, taille des particules, épaisseur du lit) est étudiée, en vue d’alimenter les discussions vers l’optimisation du procédé du point de vue de la tenue en fatigue

    Experimental Study of the Fatigue Behavior of the Alsi10mg Alloy Produced by Powder-Bed Laser Melting

    No full text
    Ce travail montre l'impact des défauts et de la microstructure sur la limite de fatigue de l’AlSi10Mg de fabrication additive (FA). Les échantillons d’étude sont fabriqués suivant trois orientations (0 °, 45 ° et 90 °) ; les surfaces d’étude sont usinées ou brutes de fabrication. Les éprouvettes sont étudiées avec ou sans traitement thermique T6. Avant toute chose, le matériau est d’abord caractérisé en lien avec les paramètres du procédé à l’aide de plusieurs moyens (microscopie, microtomographie). Du point de la fatigue, les courbes S-N sont établies avant et après T6, principalement à R = -1 en sollicitation uniaxiale. Pour toutes les éprouvettes d’étude, l’analyse des faciès montre que ce sont toujours les défauts qui sont à l’origine de la rupture par fatigue. Ainsi, un critère est appliqué pour définir ces défauts critiques (type, taille morphologie et position) et la limite de fatigue est systématiquement analysée via les diagrammes de Kitagawa. Le rôle de la direction de construction sur la tenue en fatigue est étudié, avant et après traitement thermique T6, tant pour les surfaces usinées que brutes de fabrication. À cet effet, un scénario basé sur la taille caractéristique des grains est proposé pour expliquer les effets d’orientation post-T6. La contribution de la structure de précipitation est également étudiée ; ainsi que le rôle des défauts (type, taille, morphologie et position) sur la limite de fatigue à différents états microstructuraux : avant et après T6. Afin de comprendre les mécanismes d’endommagement par fatigue en surface, la méthode des répliques est déployée sur une éprouvette polie. Dans ce cadre, une loi de propagation des fissures naturelles, c'est-à-dire qu'elles sont dues à un défaut hérité du procédé, est identifiée. Elle permet de séparer les phases d’amorçage et de propagation, alimentant ainsi les discussions sur les phénomènes d’amorçage en présence de défauts. Par ailleurs, quelques critères de fatigue sont également discutés et l’approche Defect Stress Gradient (DSG) est adaptée au matériau d’étude en tenant compte de la taille des grains cristallographiques. Pour les sections utiles brutes de fabrication, le rôle du mode de suppression des supports fabrication sur l’amorçage des fissures de fatigue est étudié ; la définition de la notion de taille de défauts en présence de la rugosité, à l’échelle de l’ondulation de surface, est abordée. Sachant que l’amorçage peut avoir lieu sur une ondulation de surface ou sur un défaut isolé (porosité ou défaut de fusion), une méthode expérimentale est proposée pour analyser la compétition entre ces facteurs. Dans un contexte de développement industriel, l’influence sur la limite de fatigue des paramètres de procédé relatifs au laser (vitesse de balayage, puissance et distance de hachure), au lit de poudre (composition chimique, taille des particules, épaisseur du lit) est étudiée, en vue d’alimenter les discussions vers l’optimisation du procédé du point de vue de la tenue en fatigue.This work shows the impact of defects and microstructure on the fatigue limit of AlSi10Mg produced by Additive Layer Manufacturing (ALM). Samples are produced according to three orientations with respect to the construction plate (0 °, 45 ° and 90 °); the studied surfaces are machined or left as-built (AB) in the gauge section. The specimens are studied with or without T6 heat treatment. The study surfaces are machined or as built. Some specimens are subjected to T6 heat treatment. Before any others study, the material is characterized in connection with the process parameters through several techniques (microscopes and 3D X-ray microtomography). Regarding the fatigue, the S-N curves are established before and after T6, mainly at R = -1 under uniaxial loading. For all the fatigue test specimens, fracture surfaces analysis shows that it is always a defect that cause fatigue failure. Thus, a criterion is applied to define these critical defects (type, size morphology and position) and the fatigue limit is analyzed through the Kitagawa type diagrams. The role of the building direction on the fatigue strength is studied, before and after T6 heat treatment, for both machined and as-built surfaces. For this purpose, a sketch based on the characteristic grain size is proposed to explain post-T6 orientation effects. The contribution of the precipitation structure is also studied; as well as the role of defects (type, size, morphology and position) on the fatigue limit at different microstructural states: before and after T6. In order to understand the surface fatigue damage mechanisms, the replica method is used on a polished specimen. In this context, a propagation law of natural cracks, that is to say due to a defect inherited from the process, is identified. It makes it possible to separate the initiation and propagation phases, thus feeding the discussions on the phenomena of priming in the presence of defects. In addition, some fatigue criteria are also discussed and the Defect Stress Gradient (DSG) approach is adapted to the studied material, by taking into account the size of the crystallographic grains. In the specific case of specimens with as-built useful sections, the role of the process of suppression of the building supports on the initiation of fatigue cracks is studied; the definition of the concept of defect size in the presence of roughness, at the scale of the surface undulation, is discussed. Knowing that initiation can occurs on a surface undulation or on an isolated defect (porosity or lack-of-fusion), an experimental method is proposed to analyze the competition between these factors. In a context of industrial development, the influence on the fatigue limit of the process parameters, related to the laser (scanning speed, power and hatching distance), or powder bed (chemical composition, particle size, bed thickness) is studied, in order to feed the discussions towards the process optimization regarding the fatigue strength

    Effect of As-Built and Ground Surfaces on the Fatigue Properties of AlSi10Mg Alloy Produced by Additive Manufacturing

    No full text
    The present work concerns the influence of surface (machined, as-built) on the fatigue resistance of AlSi10Mg produced by a powder-bed laser process. The competition between defects and surface roughness is assessed by using Kitagawa-type diagrams. Samples are printed along three directions: 0°, 45° and 90°. After axial fatigue tests with a load ratio of R = −1, all the fracture surfaces are carefully analysed. The initiation sites can be (i) a defect, (ii) the surface roughness, (iii) the surface ripple. The results indicate that ground surfaces lead to the same fatigue life as as-built surfaces. It is also shown that T6 treatment improves the fatigue resistance. However, when specimen surfaces are as-built or ground, it is difficult to correlate the fatigue results with ‘isolated defect size analysis’ neither roughness parameter for an as-built surface. Therefore, microstructure, residual stresses or multiple initiation should be further analysed to understand the results

    Influence of as-built surface and heat treatment on the fatigue resistance of Additively Layer Manufacturing (ALM) AlSi10Mg alloy.

    No full text
    This work concerns the fatigue resistance of a AlSi10Mg material produced by additive manufacturing, and more precisely the competition between as built manufacturing surface and as-machined surface on the fatigue resistance. Samples were built by a powder-bed process with an EOS-M280 machine using standard in two configurations (0° and 90°) in order to evaluate the impact of building direction on fatigue life. The impact of as-built surface on fatigue behavior is quantified for each specimen configuration. A T6 heat treatment is performed on samples in order to evaluate the impact of microstructure on fatigue behavior. For each configurations, the S-N curves is determined in as-built and T6 materials with a load ratio R= -1. The fracture surfaces are carefully analyzed in order to determine the critical defect size for each sample. A Kitagawa type diagram representing the fatigue limit as a function of the defect size is derived from these measurements. All the results were compared to those obtained in asmachined samples

    Influence of as-built surface and heat treatment on the fatigue resistance of Additively Layer Manufacturing (ALM) AlSi10Mg alloy.

    No full text
    This work concerns the fatigue resistance of a AlSi10Mg material produced by additive manufacturing, and more precisely the competition between as built manufacturing surface and as-machined surface on the fatigue resistance. Samples were built by a powder-bed process with an EOS-M280 machine using standard in two configurations (0° and 90°) in order to evaluate the impact of building direction on fatigue life. The impact of as-built surface on fatigue behavior is quantified for each specimen configuration. A T6 heat treatment is performed on samples in order to evaluate the impact of microstructure on fatigue behavior. For each configurations, the S-N curves is determined in as-built and T6 materials with a load ratio R= -1. The fracture surfaces are carefully analyzed in order to determine the critical defect size for each sample. A Kitagawa type diagram representing the fatigue limit as a function of the defect size is derived from these measurements. All the results were compared to those obtained in asmachined samples

    Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading

    No full text
    International audienceIn this study, the dynamic behaviour of light aluminum alloy AlSi10Mg obtained by additive manufacturing was investigated under laser shock loading. Two types of AlSi10Mg specimens were obtained by Selective Laser Melting (SLM) with two sets of building parameters, leading to specific architecture and microstructure compared to classical manufacturing processes. Their dynamic response to laser driven shocks was investigated on the basis of time-resolved measurements of free surface velocity, transverse visualization of shock-induced fragmentation, and post-recovery observations by means of microscopy. The results reveal a significant influence of the building parameters and SLM-inherited defects on both yield strength and spall strength values, as well as a strong dependence of high rate fracture behaviour on building direction of the material, mainly governed by melt pools shape and dissymmetry, with a combination of "interpool" and "intrapool" fracture modes

    Fatigue properties of AlSi10Mg produced by Additive Layer Manufacturing

    No full text
    International audienceThis work shows the impact of microstructure and defect on the fatigue life of an AlSi10Mg manufactured by Additive Layer Manufacturing (ALM). Samples were manufactured via a laser powder-bed process: two configurations (0° and 90°) are considered in order to evaluate the impact of the building direction on fatigue properties. 3D X-Ray tomography was used to characterize the defect population. The microstructure was characterized by considering four parameters: melt-pools, crystallographic grains, dendritic structure and precipitates. The fatigue properties were determined by establishing S-N curves for machined samples, with and without T6 heat-treatment, at R = −1 under tensile loading. The size of the defect responsible for the fatigue failure was determined in each sample so as to establish a relationship between the fatigue limit and the defect size using Kitagawa-type diagrams. In order to study a broader range of defect size, artificial defects were introduced using electro-discharge machining. The following observations are made: (i) after heat-treatment, the boundaries of melt-pools and the dendritic structure are not visible. Si is organized into pure precipitates homogeneously distributed over space and intermetallic Fe based compounds are observed in the form of needles; (ii) The impact of building direction on fatigue life is seen only after T6 heat treatment; (iii) An improvement of the fatigue resistance is observed after T6, in spite of the presence of intermetallic needles; (iv) The fatigue limit is controlled by the defect size both before and after T6 heat treatment, and it seems that the influence of T6 decreases as the defect size increases
    corecore