1,409 research outputs found

    Field theoretic calculation of the surface tension for a model electrolyte system

    Full text link
    We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant expansion about a free field theory equivalent to the Debye-H\"uckel approximation. In contrast with previous calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations. The system considered is a monovalent electrolyte with a region at the interface, of width h, from which the ionic species are excluded. In the case where the external dielectric constant epsilon_0 is smaller than the electrolyte solution's dielectric constant epsilon we show that the calculation at this order can be fully regularized. In the case where h is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electrolyte solutions is recovered, with corrections coming from a non-zero value of epsilon_0/epsilon.Comment: LaTeX, 14 pages, 3 figures, 1 tabl

    Serodiagnosis of leishmaniasis with recombinant ORFF antigen

    Get PDF
    The serodiagnostic potential of recombinant ORFF protein (rORFF) from Leishmania infantum was assessed by ELISA. Of 49 sera from confirmed cases of visceral leishmaniasis (VL), all were seropositive using 5 ng of rORFF and serum diluted 1:20, while only 38 were positive with 500 ng of soluble antigen (SA) and 44 were positive by a direct agglutination test. There was also a positive correlation between spleen size and level of seropositivity with rORFF or SA. The reciprocal endpoint titer with rORFF was 1,280 for sera from VL patients, but < 20 with sera from malaria, filariasis, and tuberculosis patients, as well as with sera from healthy individuals from endemic and non-endemic areas. Sera from 10 confirmed cutaneous leishmaniasis cases from Turkey were negative or only weakly positive with rORFF although 9 were positive with SA. Thus, rORFF protein appears useful as a sensitive reagent for the differential diagnosis of VL caused by the Leishmania donovani complex

    GOODS-HerschelHerschel: identification of the individual galaxies responsible for the 80-290μ\mum cosmic infrared background

    Get PDF
    We propose a new method of pushing HerschelHerschel to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24μ\mum colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected HerschelHerschel sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250μ\mum and more than 3 in the 350μ\mum and 500μ\mum bands. We produce realistic mock HerschelHerschel images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-HerschelHerschel Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24μ\mum prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24μ\mum neighbours and the photometric accuracy index (PAI) directly extracted from the mock HerschelHerschel images. After correction for completeness, thanks to our mock HerschelHerschel images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100μ\mum and 2.2 mJy at 160μ\mum and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250μ\mum, 350μ\mum, and 500μ\mum, respectively. The latter depths improve the detection limits of HerschelHerschel by factors of 5 at 250μ\mum, and 3 at 350μ\mum and 500μ\mum as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all HerschelHerschel bands appear to be distant siblings of the Milky Way (zz\sim0.96 for λ\lambda<<300μ\mum) with a stellar mass of MM_{\star}\sim9×\times1010^{10}M_{\odot}.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and Astrophysic

    HERUS: the far-IR/submm spectral energy distributions of local ULIRGs and photometric atlas

    Get PDF
    We present the Herschel-SPIRE photometric atlas for a complete flux limited sample of 43 local ultraluminous infrared galaxies (ULIRGs), selected at 60 μm by IRAS, as part of the HERschel ULIRG Survey (HERUS). Photometry observations were obtained using the SPIRE instrument at 250, 350, and 500 μm. We describe these observations, present the results, and combine the new observations with data from IRAS to examine the far-infrared spectral energy distributions (SEDs) of these sources. We fit the observed SEDs of HERUS objects with a simple parametrized modified blackbody model, where temperature and emissivity β are free parameters. We compare the fitted values to those of non-ULIRG local galaxies, and find, in agreement with earlier results, that HERUS ULIRGs have warmer dust (median temperature T = 37.9 ± 4.7 K compared to 21.3 ± 3.4 K) but a similar β distribution (median β = 1.7 compared to 1.8) to the Herschel reference sample (HRS, Cortese et al. 2014) galaxies. Dust masses are found to be in the range of 107.5–109 M⊙, significantly higher than that of HRS sources. We compare our results for local ULIRGs with higher redshift samples selected at 250 and 850 μm. These latter sources generally have cooler dust and/or redder 100-to-250  μm colours than our 60 μm-selected ULIRGs. We show that this difference may in part be the result of the sources being selected at different wavelengths rather than being a simple indication of rapid evolution in the properties of the population

    A Monte Carlo Approach to Evolution of the Far-Infrared Luminosity Function with BLAST

    Get PDF
    We constrain the evolution of the rest-frame far-infrared (FIR) luminosity function out to high redshift, by combining several pieces of complementary information provided by the deep Balloon-borne Large-Aperture Submillimeter Telescope surveys at 250, 350 and 500 micron, as well as other FIR and millimetre data. Unlike most other phenomenological models, we characterise the uncertainties in our fitted parameters using Monte Carlo Markov Chains. We use a bivariate local luminosity function that depends only on FIR luminosity and 60-to-100 micron colour, along with a single library of galaxy spectral energy distributions indexed by colour, and apply simple luminosity and density evolution. We use the surface density of sources, Cosmic Infrared Background (CIB) measurements and redshift distributions of bright sources, for which identifications have been made, to constrain this model. The precise evolution of the FIR luminosity function across this crucial range has eluded studies at longer wavelengths (e.g., using SCUBA and MAMBO) and at shorter wavelengths (e.g., Spitzer), and should provide a key piece of information required for the study of galaxy evolution. Our adoption of Monte Carlo methods enables us not only to find the best-fit evolution model, but also to explore correlations between the fitted parameters. Our model-fitting approach allows us to focus on sources of tension coming from the combination of data-sets. We specifically find that our choice of parameterisation has difficulty fitting the combination of CIB measurements and redshift distribution of sources near 1 mm. Existing and future data sets will be able to dramatically improve the fits, as well as break strong degeneracies among the models. [abridged]Comment: 20 pages, 14 figures, accepted to MNRA

    Evidence for B- -> Ds+ K- l- nubar and search for B- -> Ds*+ K- l- nubar

    Full text link
    We report measurements of the decays B- -> Ds(*)+ K- l- nubar in a data sample containing 657x10^6 BBbar pairs collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. We observe a signal with a significance of 6 sigma for the combined Ds and Ds* modes and find the first evidence of the B- -> Ds+ K- l- nubar decay with a significance of 3.4 sigma. We measure the following branching fractions: BF(B- -> Ds+ K- l nubar) = (0.30 +/- 0.09(stat) +0.11 -0.08(syst)) x 10^-3 and BF(B- -> Ds*+ K- l- nubar) = (0.59 +/- 0.12(stat) +/- 0.15(syst)) x 10^-3 and set an upper limit BF(B- -> Ds*+ K- l- nubar) < 0.56 x 10^-3 at the 90% confidence level. We also present the first measurement of the Ds+K- invariant mass distribution in these decays, which is dominated by a prominent peak around 2.6 GeV/c^2.Comment: Submitted to Phys. Rev.

    Submillimeter Number Counts From Statistical Analysis of BLAST Maps

    Full text link
    We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyse BLAST observations of a roughly 10 sq. deg. map centered on the Great Observatories Origins Deep Survey South (GOODS-S) field. We provide estimates of number counts at the three BLAST wavelengths, 250, 350, and 500 microns; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power-laws. We observe a generally very steep slope for the counts of about -3.7 at 250 microns and -4.5 at 350 and 500 microns, over the range ~0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well-suited for analysis of data from the Herschel satellite.Comment: Accepted for publication in the Astrophysical Journal; see associated data and other papers at http://blastexperiment.info

    Measuring star formation in high-z massive galaxies: A mid-infrared to submillimeter study of the GOODS NICMOS Survey sample

    Get PDF
    We present measurements of the mean mid-infrared-to-submillimeter flux densities of massive (M\ast \approx 2 \times 10^11 Msun) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalog on maps: at 24 {\mu}m (Spitzer/MIPS); 70, 100, and 160{\mu}m (Herschel/PACS); 250, 350, 500{\mu}m (BLAST); and 870{\mu}m (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star-formation rate of SFR = 63 [48, 81] Msun yr^-1 . We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disk-like and spheroid-like, according to their Sersic indices, n. We find evidence that most of the star formation is occurring in n \leq 2 (disk-like) galaxies, with median [interquartile] SFR = 122 [100,150] Msun yr^-1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14 [9,20] Msun yr^-1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.Comment: Accepted by MNRAS. 10 pages, 3 figures, 3 table
    corecore